{"title":"Pharmacokinetics comparison of aumolertinib, osimertinib, gefitinib and their major metabolites in mouse model and NSCLC patients","authors":"Ran Ren, Jiangang Zhang, Yongpeng He, Xianghua Zeng, Yu Zhou, Luyao Shen, Yongsheng Li, Dairong Li, Huakan Zhao","doi":"10.1002/mog2.70002","DOIUrl":null,"url":null,"abstract":"<p>The tyrosine kinase inhibitors (TKIs) of epidermal growth factor receptor (EGFR), such as osimertinib and gefitinib, aumolertinib have been widely used in EGFR mutation-positive non-small cell lung cancer (NSCLC) patients. However, the discrepancy of pharmacokinetic features and distributions in important tissues between these EGFR-TKIs remains obscure. In this study, an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method with specificity and accuracy was established. After a single equivalent dose ratio or equal dose gavage, aumolertinib displayed the shortest elimination half-life time (<i>t</i><sub>1/2</sub>), while it showed the largest area under the concentration–time curve in mouse plasma and bone marrow among these 3 EGFR-TKIs. Furthermore, at the time of reaching maximum concentration (<i>t</i><sub>max</sub>) after single equivalent dose ratio gavage, the concentrations of aumolertinib were significantly higher than that of osimertinib and gefitinib in 9 important tissues of mice. Moreover, after single oral administration, aumolertinib displayed the highest concentration in plasma samples from EGFR mutation-positive NSCLC patients. Collectively, our findings manifest that the bioavailability and tissue distribution features of aumolertinib are superior to those of osimertinib and gefitinib, providing a pharmacokinetic basis for the clinical application of aumolertinib and the development of next-generation EGFR-TKIs.</p>","PeriodicalId":100902,"journal":{"name":"MedComm – Oncology","volume":"3 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mog2.70002","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm – Oncology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mog2.70002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The tyrosine kinase inhibitors (TKIs) of epidermal growth factor receptor (EGFR), such as osimertinib and gefitinib, aumolertinib have been widely used in EGFR mutation-positive non-small cell lung cancer (NSCLC) patients. However, the discrepancy of pharmacokinetic features and distributions in important tissues between these EGFR-TKIs remains obscure. In this study, an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method with specificity and accuracy was established. After a single equivalent dose ratio or equal dose gavage, aumolertinib displayed the shortest elimination half-life time (t1/2), while it showed the largest area under the concentration–time curve in mouse plasma and bone marrow among these 3 EGFR-TKIs. Furthermore, at the time of reaching maximum concentration (tmax) after single equivalent dose ratio gavage, the concentrations of aumolertinib were significantly higher than that of osimertinib and gefitinib in 9 important tissues of mice. Moreover, after single oral administration, aumolertinib displayed the highest concentration in plasma samples from EGFR mutation-positive NSCLC patients. Collectively, our findings manifest that the bioavailability and tissue distribution features of aumolertinib are superior to those of osimertinib and gefitinib, providing a pharmacokinetic basis for the clinical application of aumolertinib and the development of next-generation EGFR-TKIs.