Transferable, highly crystalline covellite membrane for multifunctional thermoelectric systems

IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Infomat Pub Date : 2024-10-16 DOI:10.1002/inf2.12626
Myungwoo Choi, Geonhee Lee, Yea-Lee Lee, Hyejeong Lee, Jin-Hoon Yang, Hanhwi Jang, Hyeonseok Han, MinSoung Kang, Seonggwang Yoo, A-Rang Jang, Yong Suk Oh, Inkyu Park, Min-Wook Oh, Hosun Shin, Seokwoo Jeon, Jeong-O Lee, Donghwi Cho
{"title":"Transferable, highly crystalline covellite membrane for multifunctional thermoelectric systems","authors":"Myungwoo Choi,&nbsp;Geonhee Lee,&nbsp;Yea-Lee Lee,&nbsp;Hyejeong Lee,&nbsp;Jin-Hoon Yang,&nbsp;Hanhwi Jang,&nbsp;Hyeonseok Han,&nbsp;MinSoung Kang,&nbsp;Seonggwang Yoo,&nbsp;A-Rang Jang,&nbsp;Yong Suk Oh,&nbsp;Inkyu Park,&nbsp;Min-Wook Oh,&nbsp;Hosun Shin,&nbsp;Seokwoo Jeon,&nbsp;Jeong-O Lee,&nbsp;Donghwi Cho","doi":"10.1002/inf2.12626","DOIUrl":null,"url":null,"abstract":"<p>Emerging freestanding membrane technologies, especially using inorganic thermoelectric materials, demonstrate the potential for advanced thermoelectric platforms. However, using rare and toxic elements during material processing must be circumvented. Herein, we present a scalable method for synthesizing highly crystalline CuS membranes for thermoelectric applications. By sulfurizing crystalline Cu, we produce a highly percolated and easily transferable network of submicron CuS rods. The CuS membrane effectively separates thermal and electrical properties to achieve a power factor of 0.50 mW m<sup>−1</sup> K<sup>−2</sup> and thermal conductivity of 0.37 W m<sup>−1</sup> K<sup>−1</sup> at 650 K (estimated value). This yields a record-high dimensionless figure-of-merit of 0.91 at 650 K (estimated value) for covellite. Moreover, integrating 12 CuS devices into a module resulted in a power generation of ~4 μW at Δ<i>T</i> of 40 K despite using a straightforward configuration with only p-type CuS. Furthermore, based on the temperature-dependent electrical characteristics of CuS, we develop a wearable temperature sensor with antibacterial properties.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 11","pages":""},"PeriodicalIF":22.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12626","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12626","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Emerging freestanding membrane technologies, especially using inorganic thermoelectric materials, demonstrate the potential for advanced thermoelectric platforms. However, using rare and toxic elements during material processing must be circumvented. Herein, we present a scalable method for synthesizing highly crystalline CuS membranes for thermoelectric applications. By sulfurizing crystalline Cu, we produce a highly percolated and easily transferable network of submicron CuS rods. The CuS membrane effectively separates thermal and electrical properties to achieve a power factor of 0.50 mW m−1 K−2 and thermal conductivity of 0.37 W m−1 K−1 at 650 K (estimated value). This yields a record-high dimensionless figure-of-merit of 0.91 at 650 K (estimated value) for covellite. Moreover, integrating 12 CuS devices into a module resulted in a power generation of ~4 μW at ΔT of 40 K despite using a straightforward configuration with only p-type CuS. Furthermore, based on the temperature-dependent electrical characteristics of CuS, we develop a wearable temperature sensor with antibacterial properties.

Abstract Image

用于多功能热电系统的可转移高结晶沸石膜
新兴的独立膜技术,尤其是使用无机热电材料的技术,展示了先进热电平台的潜力。然而,在材料加工过程中必须避免使用稀有和有毒元素。在此,我们提出了一种可扩展的方法,用于合成热电应用领域的高结晶 CuS 膜。通过对结晶铜进行硫化,我们生产出了一种高度渗透且易于转移的亚微米级 CuS 棒网络。CuS 膜有效地分离了热性能和电性能,在 650 K(估计值)时,功率因数达到 0.50 mW m-1 K-2,热导率达到 0.37 W m-1 K-1。这样,在 650 K(估计值)的条件下,科维莱特的无量纲功率因数达到了创纪录的 0.91。此外,将 12 个 CuS 器件集成到一个模块中,在 40 K 的 ΔT 温度下可产生约 4 μW 的功率,尽管使用的是仅有 p 型 CuS 的简单配置。此外,基于 CuS 随温度变化的电气特性,我们开发出了一种具有抗菌特性的可穿戴温度传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Infomat
Infomat MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
37.70
自引率
3.10%
发文量
111
审稿时长
8 weeks
期刊介绍: InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信