Diffusion-Free Intramolecular Triplet–Triplet Annihilation Contributes to the Enhanced Exciton Utilization in OLEDs

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sara Mattiello, Andrew Danos, Kleitos Stavrou, Alessandra Ronchi, Roman Baranovski, Domenico Florenzano, Francesco Meinardi, Luca Beverina, Andrew Monkman, Angelo Monguzzi
{"title":"Diffusion-Free Intramolecular Triplet–Triplet Annihilation Contributes to the Enhanced Exciton Utilization in OLEDs","authors":"Sara Mattiello,&nbsp;Andrew Danos,&nbsp;Kleitos Stavrou,&nbsp;Alessandra Ronchi,&nbsp;Roman Baranovski,&nbsp;Domenico Florenzano,&nbsp;Francesco Meinardi,&nbsp;Luca Beverina,&nbsp;Andrew Monkman,&nbsp;Angelo Monguzzi","doi":"10.1002/adom.202401597","DOIUrl":null,"url":null,"abstract":"<p>Triplet–triplet annihilation (TTA), or triplet fusion, is a biexcitonic process in which two triplet-excited molecules can combine their energy to promote one into an excited singlet state. To alleviate the dependence of the TTA rate and yield on triplet diffusion in both solid and solution environments, intramolecular TTA (intra-TTA) has been recently proposed in conjugated molecular systems able to hold multiple triplet excitons simultaneously. Developing from the previous demonstration of TTA performance enhancement in sensitized upconversion solutions, here similar improvements in triplet harvesting in solid-state films are reported under electrical excitation in organic light emitting diodes (OLEDs). At low dye concentration and low current densities, the intra-TTA active OLED shows a +40% improved external quantum efficiency with respect to the reference device, and a TTA spin-statistical factor <i>f</i> <sup>4DPA</sup> of 0.4, close to that determined in fluid solution for the individual chromophore (0.45). These results therefore indicate the utility of this molecular design strategy across a wider range of TTA applications, and with particular utility in the further development of low-power TTA-enhanced OLEDs.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 33","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202401597","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202401597","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Triplet–triplet annihilation (TTA), or triplet fusion, is a biexcitonic process in which two triplet-excited molecules can combine their energy to promote one into an excited singlet state. To alleviate the dependence of the TTA rate and yield on triplet diffusion in both solid and solution environments, intramolecular TTA (intra-TTA) has been recently proposed in conjugated molecular systems able to hold multiple triplet excitons simultaneously. Developing from the previous demonstration of TTA performance enhancement in sensitized upconversion solutions, here similar improvements in triplet harvesting in solid-state films are reported under electrical excitation in organic light emitting diodes (OLEDs). At low dye concentration and low current densities, the intra-TTA active OLED shows a +40% improved external quantum efficiency with respect to the reference device, and a TTA spin-statistical factor f4DPA of 0.4, close to that determined in fluid solution for the individual chromophore (0.45). These results therefore indicate the utility of this molecular design strategy across a wider range of TTA applications, and with particular utility in the further development of low-power TTA-enhanced OLEDs.

Abstract Image

无扩散分子内三重-三重湮灭有助于提高有机发光二极管中的激子利用率
三重-三重湮灭(TTA)或三重融合是一种双激发过程,在这一过程中,两个三重激发的分子可以结合它们的能量,使其中一个分子进入激发的单重态。为了缓解 TTA 速率和产率对固态和溶液环境中三重态扩散的依赖性,最近有人提出在能够同时容纳多个三重激子的共轭分子体系中进行分子内 TTA(intra-TTA)。根据之前在敏化上转换溶液中展示的 TTA 性能提升,本文报告了在有机发光二极管(OLED)电激励下固态薄膜中三重子收集的类似改进。在低染料浓度和低电流密度条件下,TTA 内活性 OLED 的外部量子效率比参考装置提高了 40%,TTA 自旋统计因子 f 4DPA 为 0.4,接近在流体溶液中测定的单个发色团的统计因子(0.45)。因此,这些结果表明这种分子设计策略适用于更广泛的 TTA 应用,尤其适用于进一步开发低功耗 TTA 增强型有机发光二极管。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信