{"title":"Investigation of an Impact-buffered Viscous Damper: A new mechanical model, experiments, and numerical simulations","authors":"Yifei Zhang , Yong Ding , Guoshan Xu","doi":"10.1016/j.jsv.2024.118852","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a new mechanical model and presents experimental investigations for impact-buffered viscous dampers (IBVDs). A multi-degree-of-freedom bridge system is employed for numerical analysis, investigating the vibration control and impact characteristics of IBVDs. The experimental results closely align with theoretical predictions, with errors of 4.33 % for maximum positive force and 6.73 % for energy dissipation. When the displacement amplitude is greater than or equal to 6 mm, the equivalent viscous damping ratio of the IBVD decreases with the displacement amplitude. Numerical simulations show that IBVDs reduce the maximum acceleration of the girder and the maximum impact force by 20 % and 24 %, respectively. Compared to conventional viscous dampers, IBVDs demonstrate superior vibration control in terms of base shear and girder displacement. An appropriately designed IBVD can dissipate energy comparably to a conventional viscous damper during design-basis earthquakes while also providing enhanced cushioning against sudden collisions in more severe earthquakes.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"597 ","pages":"Article 118852"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X2400614X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a new mechanical model and presents experimental investigations for impact-buffered viscous dampers (IBVDs). A multi-degree-of-freedom bridge system is employed for numerical analysis, investigating the vibration control and impact characteristics of IBVDs. The experimental results closely align with theoretical predictions, with errors of 4.33 % for maximum positive force and 6.73 % for energy dissipation. When the displacement amplitude is greater than or equal to 6 mm, the equivalent viscous damping ratio of the IBVD decreases with the displacement amplitude. Numerical simulations show that IBVDs reduce the maximum acceleration of the girder and the maximum impact force by 20 % and 24 %, respectively. Compared to conventional viscous dampers, IBVDs demonstrate superior vibration control in terms of base shear and girder displacement. An appropriately designed IBVD can dissipate energy comparably to a conventional viscous damper during design-basis earthquakes while also providing enhanced cushioning against sudden collisions in more severe earthquakes.
期刊介绍:
The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application.
JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.