{"title":"A hybrid model for detecting intrusions using stacked autoencoders and extreme gradient boosting","authors":"Hari Vinayak M.V. , Jarin T.","doi":"10.1016/j.cose.2024.104212","DOIUrl":null,"url":null,"abstract":"<div><div>In the contemporary digital landscape dominated by the internet, a wide array of attacks occurs daily, driven by a large and diverse user base. The field of identifying these cyberattacks is rapidly growing and is mainly accomplished through the utilization of intrusion detection systems (IDS). The IDS is designed to continuously observe data flow and identify any potentially harmful or suspicious acts that could signal a cyberattack. Traditional machine learning (ML) techniques encounter challenges in effectively detecting unknown attacks and dealing with imbalanced data distributions, resulting in reduced detection performance. This paper presents a hybrid IDS model that integrates an ML classifier like XGBoost with a stacked sparse autoencoder (SSAE). The low-dimensional features obtained from the SSAE are utilized for training the classifier. The experimental outcomes indicate that the model surpasses the formerly recommended approaches regarding intrusion detection and decreases the ML classifier’s training and testing times. We have also evaluated our model’s performance by comparing it with other advanced techniques documented in the existing literature.</div></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":"150 ","pages":"Article 104212"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404824005182","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In the contemporary digital landscape dominated by the internet, a wide array of attacks occurs daily, driven by a large and diverse user base. The field of identifying these cyberattacks is rapidly growing and is mainly accomplished through the utilization of intrusion detection systems (IDS). The IDS is designed to continuously observe data flow and identify any potentially harmful or suspicious acts that could signal a cyberattack. Traditional machine learning (ML) techniques encounter challenges in effectively detecting unknown attacks and dealing with imbalanced data distributions, resulting in reduced detection performance. This paper presents a hybrid IDS model that integrates an ML classifier like XGBoost with a stacked sparse autoencoder (SSAE). The low-dimensional features obtained from the SSAE are utilized for training the classifier. The experimental outcomes indicate that the model surpasses the formerly recommended approaches regarding intrusion detection and decreases the ML classifier’s training and testing times. We have also evaluated our model’s performance by comparing it with other advanced techniques documented in the existing literature.
期刊介绍:
Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world.
Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.