An extensive image dataset for deep learning-based classification of rice kernel varieties in Bangladesh

IF 1 Q3 MULTIDISCIPLINARY SCIENCES
Md Tahsin, Md. Mafiul Hasan Matin, Mashrufa Khandaker, Redita Sultana Reemu, Mehrab Islam Arnab, Mohammad Rifat Ahmmad Rashid, Md Mostofa Kamal Rasel, Mohammad Manzurul Islam, Maheen Islam, Md. Sawkat Ali
{"title":"An extensive image dataset for deep learning-based classification of rice kernel varieties in Bangladesh","authors":"Md Tahsin,&nbsp;Md. Mafiul Hasan Matin,&nbsp;Mashrufa Khandaker,&nbsp;Redita Sultana Reemu,&nbsp;Mehrab Islam Arnab,&nbsp;Mohammad Rifat Ahmmad Rashid,&nbsp;Md Mostofa Kamal Rasel,&nbsp;Mohammad Manzurul Islam,&nbsp;Maheen Islam,&nbsp;Md. Sawkat Ali","doi":"10.1016/j.dib.2024.111109","DOIUrl":null,"url":null,"abstract":"<div><div>This article introduces a comprehensive dataset developed in collaboration with the Bangladesh Institute of Nuclear Agriculture (BINA) and the Bangladesh Rice Research Institute (BRRI), featuring high-resolution images of 38 local rice varieties. Captured using advanced microscopic cameras, the dataset comprises 19,000 original images, enhanced through data augmentation techniques to include an additional 57,000 images, totaling 76,000 images. These techniques, which include transformations such as scaling, rotation, and lighting adjustments, enrich the dataset by simulating various environmental conditions, providing a broader perspective on each variety. The diverse array of rice strains such as BD33, BD30, BD39, among others, are meticulously detailed through their unique characteristics—color, size, and utility in agriculture—providing a rich resource for research. This augmented dataset not only enhances the understanding of rice diversity but also supports the development of innovative agricultural practices and breeding programs, offering a critical tool for researchers aiming to analyze and leverage rice genetic diversity effectively.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"57 ","pages":"Article 111109"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340924010710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces a comprehensive dataset developed in collaboration with the Bangladesh Institute of Nuclear Agriculture (BINA) and the Bangladesh Rice Research Institute (BRRI), featuring high-resolution images of 38 local rice varieties. Captured using advanced microscopic cameras, the dataset comprises 19,000 original images, enhanced through data augmentation techniques to include an additional 57,000 images, totaling 76,000 images. These techniques, which include transformations such as scaling, rotation, and lighting adjustments, enrich the dataset by simulating various environmental conditions, providing a broader perspective on each variety. The diverse array of rice strains such as BD33, BD30, BD39, among others, are meticulously detailed through their unique characteristics—color, size, and utility in agriculture—providing a rich resource for research. This augmented dataset not only enhances the understanding of rice diversity but also supports the development of innovative agricultural practices and breeding programs, offering a critical tool for researchers aiming to analyze and leverage rice genetic diversity effectively.
基于深度学习的孟加拉国水稻核心品种分类的广泛图像数据集
本文介绍了与孟加拉国核农业研究所(BINA)和孟加拉国水稻研究所(BRRI)合作开发的综合数据集,其中包含 38 个当地水稻品种的高分辨率图像。该数据集使用先进的显微照相机拍摄,包含 19,000 张原始图像,并通过数据增强技术对另外 57,000 张图像进行了增强,共计 76,000 张图像。这些技术包括缩放、旋转和光照调整等变换,通过模拟各种环境条件丰富了数据集,为每个品种提供了更广阔的视角。BD33、BD30、BD39 等各种水稻品系通过其独特的特征--颜色、大小和在农业中的用途--得到了细致入微的描述,为研究提供了丰富的资源。这一扩充数据集不仅增强了人们对水稻多样性的了解,还支持了创新农业实践和育种计划的发展,为旨在有效分析和利用水稻遗传多样性的研究人员提供了重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信