Zhenwei Su , Hamza Boucetta , Jiahui Shao , Jinling Huang , Ran Wang , Aining Shen , Wei He , Zhi Ping Xu , Lingxiao Zhang
{"title":"Next-generation aluminum adjuvants: Immunomodulatory layered double hydroxide NanoAlum reengineered from first-line drugs","authors":"Zhenwei Su , Hamza Boucetta , Jiahui Shao , Jinling Huang , Ran Wang , Aining Shen , Wei He , Zhi Ping Xu , Lingxiao Zhang","doi":"10.1016/j.apsb.2024.09.012","DOIUrl":null,"url":null,"abstract":"<div><div>Aluminum adjuvants (Alum), approved by the US Food and Drug Administration, have been extensively used in vaccines containing recombinant antigens, subunits of pathogens, or toxins for almost a century. While Alums typically elicit strong humoral immune responses, their ability to induce cellular and mucosal immunity is limited. As an alternative, layered double hydroxide (LDH), a widely used antacid, has emerged as a novel class of potent nano-aluminum adjuvants (NanoAlum), demonstrating advantageous physicochemical properties, biocompatibility and adjuvanticity in both humoral and cellular immune responses. In this review, we summarize and compare the advantages and disadvantages of Alum and NanoAlum in these properties and their performance as adjuvants. Moreover, we propose the key features for ideal adjuvants and demonstrate that LDH NanoAlum is a promising candidate by summarizing its current progress in immunotherapeutic cancer treatments. Finally, we conclude the review by offering our integrated perspectives about the remaining challenges and future directions for NanoAlum's application in preclinical/clinical settings.</div></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":"14 11","pages":"Pages 4665-4682"},"PeriodicalIF":14.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmaceutica Sinica. B","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211383524003745","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Aluminum adjuvants (Alum), approved by the US Food and Drug Administration, have been extensively used in vaccines containing recombinant antigens, subunits of pathogens, or toxins for almost a century. While Alums typically elicit strong humoral immune responses, their ability to induce cellular and mucosal immunity is limited. As an alternative, layered double hydroxide (LDH), a widely used antacid, has emerged as a novel class of potent nano-aluminum adjuvants (NanoAlum), demonstrating advantageous physicochemical properties, biocompatibility and adjuvanticity in both humoral and cellular immune responses. In this review, we summarize and compare the advantages and disadvantages of Alum and NanoAlum in these properties and their performance as adjuvants. Moreover, we propose the key features for ideal adjuvants and demonstrate that LDH NanoAlum is a promising candidate by summarizing its current progress in immunotherapeutic cancer treatments. Finally, we conclude the review by offering our integrated perspectives about the remaining challenges and future directions for NanoAlum's application in preclinical/clinical settings.
Acta Pharmaceutica Sinica. BPharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
22.40
自引率
5.50%
发文量
1051
审稿时长
19 weeks
期刊介绍:
The Journal of the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association oversees the peer review process for Acta Pharmaceutica Sinica. B (APSB).
Published monthly in English, APSB is dedicated to disseminating significant original research articles, rapid communications, and high-quality reviews that highlight recent advances across various pharmaceutical sciences domains. These encompass pharmacology, pharmaceutics, medicinal chemistry, natural products, pharmacognosy, pharmaceutical analysis, and pharmacokinetics.
A part of the Acta Pharmaceutica Sinica series, established in 1953 and indexed in prominent databases like Chemical Abstracts, Index Medicus, SciFinder Scholar, Biological Abstracts, International Pharmaceutical Abstracts, Cambridge Scientific Abstracts, and Current Bibliography on Science and Technology, APSB is sponsored by the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association. Its production and hosting are facilitated by Elsevier B.V. This collaborative effort ensures APSB's commitment to delivering valuable contributions to the pharmaceutical sciences community.