Stability evaluation of approximate Riemann solvers using the direct Lyapunov method

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
A. Gogoi , J.C. Mandal , A. Saraf
{"title":"Stability evaluation of approximate Riemann solvers using the direct Lyapunov method","authors":"A. Gogoi ,&nbsp;J.C. Mandal ,&nbsp;A. Saraf","doi":"10.1016/j.jcp.2024.113599","DOIUrl":null,"url":null,"abstract":"<div><div>The paper presents a new approach of stability evaluation of the approximate Riemann solvers based on the direct Lyapunov method. The present methodology offers a detailed understanding of the origins of numerical shock instability in approximate Riemann solvers. The pressure perturbation feeding the density and transverse momentum perturbations is identified as the cause of the numerical shock instabilities in the complete approximate Riemann solvers, while the magnitude of the numerical shock instabilities is found to be proportional to the magnitude of the pressure perturbations. A shock-stable HLLEM scheme is proposed based on the insights obtained from this analysis about the origins of numerical shock instability in the approximate Riemann solvers. A set of numerical test cases are solved to show that the proposed scheme is free from numerical shock instability problems of the original HLLEM scheme at high Mach numbers.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"522 ","pages":"Article 113599"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124008477","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents a new approach of stability evaluation of the approximate Riemann solvers based on the direct Lyapunov method. The present methodology offers a detailed understanding of the origins of numerical shock instability in approximate Riemann solvers. The pressure perturbation feeding the density and transverse momentum perturbations is identified as the cause of the numerical shock instabilities in the complete approximate Riemann solvers, while the magnitude of the numerical shock instabilities is found to be proportional to the magnitude of the pressure perturbations. A shock-stable HLLEM scheme is proposed based on the insights obtained from this analysis about the origins of numerical shock instability in the approximate Riemann solvers. A set of numerical test cases are solved to show that the proposed scheme is free from numerical shock instability problems of the original HLLEM scheme at high Mach numbers.
利用直接李雅普诺夫法评估近似黎曼求解器的稳定性
本文提出了一种基于直接李亚普诺夫方法的近似黎曼求解器稳定性评估新方法。本方法提供了对近似黎曼求解器中数值冲击不稳定性起源的详细理解。在完整的近似黎曼求解器中,馈入密度和横动量扰动的压力扰动被确定为数值冲击不稳定性的原因,同时发现数值冲击不稳定性的大小与压力扰动的大小成正比。根据对近似黎曼求解器中数值冲击不稳定性根源的分析,提出了一种冲击稳定的 HLLEM 方案。通过对一组数值测试案例的求解,表明所提出的方案在高马赫数下不存在原始 HLLEM 方案的数值冲击不稳定性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信