Cheng Wang , Minghao Zhang , Shunyao Li , Miaomiao Gong , Ming-yu Luo , Mo-cong Zhang , Jing-Hua Zou , Ningxiang Shen , Lu Xu , Hui-min Lei , Ling Bi , Liang Zhu , Zhengting Wang , Hong-zhuan Chen , Lu Zhou , Ying Shen
{"title":"A phosphoglycerate mutase 1 allosteric inhibitor restrains TAM-mediated colon cancer progression","authors":"Cheng Wang , Minghao Zhang , Shunyao Li , Miaomiao Gong , Ming-yu Luo , Mo-cong Zhang , Jing-Hua Zou , Ningxiang Shen , Lu Xu , Hui-min Lei , Ling Bi , Liang Zhu , Zhengting Wang , Hong-zhuan Chen , Lu Zhou , Ying Shen","doi":"10.1016/j.apsb.2024.09.007","DOIUrl":null,"url":null,"abstract":"<div><div>Colorectal cancer (CRC) is a prevalent malignant tumor often leading to liver metastasis and mortality. Despite some success with PD-1/PD-L1 immunotherapy, the response rate for colon cancer patients remains relatively low. This is closely related to the immunosuppressive tumor microenvironment mediated by tumor-associated macrophages (TAMs). Our previous work identified that a phosphoglycerate mutase 1 (PGAM1) allosteric inhibitor, HKB99, exerts a range of anti-tumor activities in lung cancer. Here, we found that upregulation of <em>PGAM1</em> correlates with increased levels of M2-like tumor-associated macrophages (TAMs) in human colon cancer samples, particularly in liver metastatic tissues. HKB99 suppressed tumor growth and metastasis in cell culture and syngeneic tumor models. M2-polarization, induced by colon cancer cell co-culture, was reversed by HKB99. Conversely, the increased migration of colon cancer cells by M2-TAMs was remarkably restrained by HKB99. Notably, a decrease in TAM infiltration was required for the HKB99-mediated anti-tumor effect, along with an increase in CD8<sup>+</sup> T cell infiltration. Moreover, HKB99 improved the efficacy of anti-PD-1 treatment in syngeneic tumors. Overall, this study highlights HKB99's inhibitory activity in TAM-mediated colon cancer progression. Targeting PGAM1 could lead to novel therapeutic strategies and enhance the effectiveness of existing immunotherapies for colon cancer.</div></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":"14 11","pages":"Pages 4819-4831"},"PeriodicalIF":14.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmaceutica Sinica. B","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211383524003757","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Colorectal cancer (CRC) is a prevalent malignant tumor often leading to liver metastasis and mortality. Despite some success with PD-1/PD-L1 immunotherapy, the response rate for colon cancer patients remains relatively low. This is closely related to the immunosuppressive tumor microenvironment mediated by tumor-associated macrophages (TAMs). Our previous work identified that a phosphoglycerate mutase 1 (PGAM1) allosteric inhibitor, HKB99, exerts a range of anti-tumor activities in lung cancer. Here, we found that upregulation of PGAM1 correlates with increased levels of M2-like tumor-associated macrophages (TAMs) in human colon cancer samples, particularly in liver metastatic tissues. HKB99 suppressed tumor growth and metastasis in cell culture and syngeneic tumor models. M2-polarization, induced by colon cancer cell co-culture, was reversed by HKB99. Conversely, the increased migration of colon cancer cells by M2-TAMs was remarkably restrained by HKB99. Notably, a decrease in TAM infiltration was required for the HKB99-mediated anti-tumor effect, along with an increase in CD8+ T cell infiltration. Moreover, HKB99 improved the efficacy of anti-PD-1 treatment in syngeneic tumors. Overall, this study highlights HKB99's inhibitory activity in TAM-mediated colon cancer progression. Targeting PGAM1 could lead to novel therapeutic strategies and enhance the effectiveness of existing immunotherapies for colon cancer.
Acta Pharmaceutica Sinica. BPharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
22.40
自引率
5.50%
发文量
1051
审稿时长
19 weeks
期刊介绍:
The Journal of the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association oversees the peer review process for Acta Pharmaceutica Sinica. B (APSB).
Published monthly in English, APSB is dedicated to disseminating significant original research articles, rapid communications, and high-quality reviews that highlight recent advances across various pharmaceutical sciences domains. These encompass pharmacology, pharmaceutics, medicinal chemistry, natural products, pharmacognosy, pharmaceutical analysis, and pharmacokinetics.
A part of the Acta Pharmaceutica Sinica series, established in 1953 and indexed in prominent databases like Chemical Abstracts, Index Medicus, SciFinder Scholar, Biological Abstracts, International Pharmaceutical Abstracts, Cambridge Scientific Abstracts, and Current Bibliography on Science and Technology, APSB is sponsored by the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association. Its production and hosting are facilitated by Elsevier B.V. This collaborative effort ensures APSB's commitment to delivering valuable contributions to the pharmaceutical sciences community.