Indranil Biswas , Sorin Dumitrescu , Archana S. Morye
{"title":"Logarithmic Cartan geometry on complex manifolds with trivial logarithmic tangent bundle","authors":"Indranil Biswas , Sorin Dumitrescu , Archana S. Morye","doi":"10.1016/j.difgeo.2024.102213","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>M</em> be a compact complex manifold, and <span><math><mi>D</mi><mspace></mspace><mo>⊂</mo><mspace></mspace><mi>M</mi></math></span> a reduced normal crossing divisor on it, such that the logarithmic tangent bundle <span><math><mi>T</mi><mi>M</mi><mo>(</mo><mo>−</mo><mi>log</mi><mo></mo><mi>D</mi><mo>)</mo></math></span> is holomorphically trivial. Let <span><math><mi>A</mi></math></span> denote the maximal connected subgroup of the group of all holomorphic automorphisms of <em>M</em> that preserve the divisor <em>D</em>. Take a holomorphic Cartan geometry <span><math><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>Θ</mi><mo>)</mo></math></span> of type <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mspace></mspace><mi>H</mi><mo>)</mo></math></span> on <em>M</em>, where <span><math><mi>H</mi><mspace></mspace><mo>⊂</mo><mspace></mspace><mi>G</mi></math></span> are complex Lie groups. We prove that <span><math><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>Θ</mi><mo>)</mo></math></span> is isomorphic to <span><math><mo>(</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mo>⁎</mo></mrow></msup><msub><mrow><mi>E</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>,</mo><mspace></mspace><msup><mrow><mi>ρ</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>Θ</mi><mo>)</mo></math></span> for every <span><math><mi>ρ</mi><mspace></mspace><mo>∈</mo><mspace></mspace><mi>A</mi></math></span> if and only if the principal <em>H</em>–bundle <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>H</mi></mrow></msub></math></span> admits a logarithmic connection Δ singular on <em>D</em> such that Θ is preserved by the connection Δ.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"97 ","pages":"Article 102213"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524001062","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let M be a compact complex manifold, and a reduced normal crossing divisor on it, such that the logarithmic tangent bundle is holomorphically trivial. Let denote the maximal connected subgroup of the group of all holomorphic automorphisms of M that preserve the divisor D. Take a holomorphic Cartan geometry of type on M, where are complex Lie groups. We prove that is isomorphic to for every if and only if the principal H–bundle admits a logarithmic connection Δ singular on D such that Θ is preserved by the connection Δ.
设 M 是紧凑复流形,D⊂M 是其上的还原正交分部,从而对数切线束 TM(-logD) 是全形琐细的。让 A 表示 M 的所有全形自变量群中保留了除数 D 的最大连通子群。取 M 上 (G,H) 类型的全形笛卡尔几何 (EH,Θ),其中 H⊂G 是复数李群。我们证明,对于每一个ρ∈A,当且仅当主 H 束 EH 在 D 上接纳一个对数连接Δ奇异时,(EH,Θ) 与(ρ⁎EH,ρ⁎Θ)同构,从而Θ被连接Δ保留。
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.