Wang Wang , Qizhou Jiang , Jiaxin Tao , Zhenxian Zhang , GuoPing Liu , Binxuan Qiu , Qingyang Hu , Yuxi Zhang , Chao Xie , Jiawen Song , GuoZhen Jiang , Hui Zhong , Yanling Zou , Jiaqi Li , Shaoli lv
{"title":"A structure-based approach to discover a potential isomerase Pin1 inhibitor for cancer therapy using computational simulation and biological studies","authors":"Wang Wang , Qizhou Jiang , Jiaxin Tao , Zhenxian Zhang , GuoPing Liu , Binxuan Qiu , Qingyang Hu , Yuxi Zhang , Chao Xie , Jiawen Song , GuoZhen Jiang , Hui Zhong , Yanling Zou , Jiaqi Li , Shaoli lv","doi":"10.1016/j.compbiolchem.2024.108290","DOIUrl":null,"url":null,"abstract":"<div><div>Peptidyl-prolyl cis/trans isomerase Pin1 occupies a prominent role in preventing the development of certain malignant tumors. Pin1 is considered a target for the treatment of related malignant tumors, so the identification of novel Pin1 inhibitors is particularly urgent. In this study, we preliminarily predicted eight candidates from FDA-approved drug database as the potential Pin1 inhibitors through virtual screening combined with empirical screening. Therefore, we selected these eight candidates and tested their binding affinity and inhibitory activity against Pin1 using fluorescence titration and PPIase activity assays, respectively. Subsequently, we found that four FDA-approved drugs showed good binding affinities and inhibition effects. In addition, we also observed that bexarotene can reduce cell viability in a dose-dependent and time-dependent manner and induce apoptosis. Finally, we inferred that residues K63, R68 and R69 are important in the binding process between bexarotene and Pin1. All in all, repurposing of FDA-approved drugs to inhibit Pin1 may provide a promising insight into the identification and development of new treatments for certain malignant tumors.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"114 ","pages":"Article 108290"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124002780","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Peptidyl-prolyl cis/trans isomerase Pin1 occupies a prominent role in preventing the development of certain malignant tumors. Pin1 is considered a target for the treatment of related malignant tumors, so the identification of novel Pin1 inhibitors is particularly urgent. In this study, we preliminarily predicted eight candidates from FDA-approved drug database as the potential Pin1 inhibitors through virtual screening combined with empirical screening. Therefore, we selected these eight candidates and tested their binding affinity and inhibitory activity against Pin1 using fluorescence titration and PPIase activity assays, respectively. Subsequently, we found that four FDA-approved drugs showed good binding affinities and inhibition effects. In addition, we also observed that bexarotene can reduce cell viability in a dose-dependent and time-dependent manner and induce apoptosis. Finally, we inferred that residues K63, R68 and R69 are important in the binding process between bexarotene and Pin1. All in all, repurposing of FDA-approved drugs to inhibit Pin1 may provide a promising insight into the identification and development of new treatments for certain malignant tumors.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.