{"title":"Hyperparameter recommendation via automated meta-feature selection embedded with kernel group Lasso learning","authors":"Liping Deng , MingQing Xiao","doi":"10.1016/j.knosys.2024.112706","DOIUrl":null,"url":null,"abstract":"<div><div>Hyperparameter recommendation via meta-learning relies on the characterization and quality of meta-features. These meta-features provide critical information about the underlying datasets but are often selected manually based on the practitioner’s experience and preference, which can be inefficient and ineffective in many applications. In this paper, we propose a novel hyperparameter recommendation approach that integrates with a Lasso-based multivariate kernel group (KGLasso) model. The developed KGLasso model automatically identifies primary meta-features through model training. By selecting the most explanatory meta-features for a specific meta-learning task, the recommendation performance becomes much more effective. Our KGLasso model builds on a group-wise generalized multivariate Lasso approach. Within this framework, we establish a minimization algorithm using a corresponding auxiliary function, which is mathematically proven to be convergent and robust. As an application, we develop a hyperparameter recommendation system using our built KGLasso model on 120 UCI datasets for the well-known support vector machine (SVM) algorithm. This system efficiently provides competent hyperparameter recommendations for new tasks. Extensive experiments, including comparisons with popular meta-learning baselines and search algorithms, demonstrate the superiority of our proposed approach. Our results highlight the benefits of integrating model learning and feature selection to construct an automated meta-learner for hyperparameter recommendation in meta-learning.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"306 ","pages":"Article 112706"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124013406","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Hyperparameter recommendation via meta-learning relies on the characterization and quality of meta-features. These meta-features provide critical information about the underlying datasets but are often selected manually based on the practitioner’s experience and preference, which can be inefficient and ineffective in many applications. In this paper, we propose a novel hyperparameter recommendation approach that integrates with a Lasso-based multivariate kernel group (KGLasso) model. The developed KGLasso model automatically identifies primary meta-features through model training. By selecting the most explanatory meta-features for a specific meta-learning task, the recommendation performance becomes much more effective. Our KGLasso model builds on a group-wise generalized multivariate Lasso approach. Within this framework, we establish a minimization algorithm using a corresponding auxiliary function, which is mathematically proven to be convergent and robust. As an application, we develop a hyperparameter recommendation system using our built KGLasso model on 120 UCI datasets for the well-known support vector machine (SVM) algorithm. This system efficiently provides competent hyperparameter recommendations for new tasks. Extensive experiments, including comparisons with popular meta-learning baselines and search algorithms, demonstrate the superiority of our proposed approach. Our results highlight the benefits of integrating model learning and feature selection to construct an automated meta-learner for hyperparameter recommendation in meta-learning.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.