{"title":"FourierAugment: Frequency-based image encoding for resource-constrained vision tasks","authors":"Jiae Yoon , Myeongjin Lee , Ue-Hwan Kim","doi":"10.1016/j.knosys.2024.112695","DOIUrl":null,"url":null,"abstract":"<div><div>Resource-constrained vision tasks, such as image classification on low-end devices, put forward significant challenges due to limited computational resources and restricted access to a vast number of training samples. Previous studies have utilized data augmentation that optimizes various image transformations to learn effective lightweight models with few data samples. However, these studies require a calibration step for optimizing data augmentation to specific scenarios or hardly exploit frequency components readily available from Fourier analysis. To address the limitations, we propose a frequency-based image encoding method, namely FourierAugment, which allows lightweight models to learn richer features with a restrained amount of data. Further, we reveal the correlations between the amount of data and frequency components lightweight models learn in the process of designing FourierAugment. Extensive experiments on multiple resource-constrained vision tasks under diverse conditions corroborate the effectiveness of the proposed FourierAugment method compared to baselines.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"306 ","pages":"Article 112695"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124013297","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Resource-constrained vision tasks, such as image classification on low-end devices, put forward significant challenges due to limited computational resources and restricted access to a vast number of training samples. Previous studies have utilized data augmentation that optimizes various image transformations to learn effective lightweight models with few data samples. However, these studies require a calibration step for optimizing data augmentation to specific scenarios or hardly exploit frequency components readily available from Fourier analysis. To address the limitations, we propose a frequency-based image encoding method, namely FourierAugment, which allows lightweight models to learn richer features with a restrained amount of data. Further, we reveal the correlations between the amount of data and frequency components lightweight models learn in the process of designing FourierAugment. Extensive experiments on multiple resource-constrained vision tasks under diverse conditions corroborate the effectiveness of the proposed FourierAugment method compared to baselines.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.