{"title":"DRN-DSA: A hybrid deep learning network model for precipitation nowcasting using time series data","authors":"Gujanatti Rudrappa , Nataraj Vijapur","doi":"10.1016/j.knosys.2024.112679","DOIUrl":null,"url":null,"abstract":"<div><div>Precipitation nowcasting involves short-term weather forecasting, predicting rain or snow within the next two hours. By analyzing current atmospheric conditions, it aids meteorologists in identifying weather patterns and preparing for severe events such as flooding. These nowcasts are typically displayed on geographical maps by weather services. However, the rapidly changing climate conditions make precipitation nowcasting a formidable challenge, as accurate short-term forecasts are hindered by immediate weather fluctuations. Traditional nowcasting methods, like numerical models and radar extrapolation, have limitations in delivering highly detailed and timely precipitation nowcasts. To overcome this issue, an effective solution is framed for precipitation nowcasting using a hybrid network approach named Deep Residual Network-Deep Stacked Autoencoder (DRN-DSA). Initially, the input time series data is acquired from the dataset. Thereafter, the effective technical indicators are extracted at the feature extraction stage. Later on, precipitation-type nowcasting is carried out using the proposed hybrid DRN-DSA, which is developed by incorporating a Deep Stacked Autoencoder (DSA) and Deep Residual Network (DRN). Finally, Weather nowcasting is carried out using the same proposed hybrid DSA-DRN. Moreover, when compared to other traditional models, the proposed DRN-DSA has gained superior results with a Relative Absolute Error (RAE) of 0.295, Root Mean Square Error (RMSE) of 0.154, low Mean Square Error (MSE) of 0.0236, Mean Absolute Percentage Error (MAPE) of 0.295, and False Acceptance Rate (FAR) of 0.0118.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"306 ","pages":"Article 112679"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124013133","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Precipitation nowcasting involves short-term weather forecasting, predicting rain or snow within the next two hours. By analyzing current atmospheric conditions, it aids meteorologists in identifying weather patterns and preparing for severe events such as flooding. These nowcasts are typically displayed on geographical maps by weather services. However, the rapidly changing climate conditions make precipitation nowcasting a formidable challenge, as accurate short-term forecasts are hindered by immediate weather fluctuations. Traditional nowcasting methods, like numerical models and radar extrapolation, have limitations in delivering highly detailed and timely precipitation nowcasts. To overcome this issue, an effective solution is framed for precipitation nowcasting using a hybrid network approach named Deep Residual Network-Deep Stacked Autoencoder (DRN-DSA). Initially, the input time series data is acquired from the dataset. Thereafter, the effective technical indicators are extracted at the feature extraction stage. Later on, precipitation-type nowcasting is carried out using the proposed hybrid DRN-DSA, which is developed by incorporating a Deep Stacked Autoencoder (DSA) and Deep Residual Network (DRN). Finally, Weather nowcasting is carried out using the same proposed hybrid DSA-DRN. Moreover, when compared to other traditional models, the proposed DRN-DSA has gained superior results with a Relative Absolute Error (RAE) of 0.295, Root Mean Square Error (RMSE) of 0.154, low Mean Square Error (MSE) of 0.0236, Mean Absolute Percentage Error (MAPE) of 0.295, and False Acceptance Rate (FAR) of 0.0118.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.