{"title":"Optimization control of time-varying cyber–physical systems via dynamic-triggered strategies","authors":"Yuanshan Liu, Yude Xia","doi":"10.1016/j.rico.2024.100497","DOIUrl":null,"url":null,"abstract":"<div><div>A novel approach is proposed for designing control strategies for time-varying cyber–physical systems (CPSs) with unknown dynamics, eliminating the need for system identification. Combining with the dynamic-triggered strategies (DTSs), the closed-loop system is parameterized using matrices that are depended on data obtained from a collection of input-state trajectories gathered offline. Additionally, the problem of data-driven optimization control is elegantly resolved through the utilization of classical linear quadratic regulator (LQR) technology, showcasing a remarkable innovation by obviating the necessity for the specific mathematical model of CPSs proposed in this paper. A numerical illustration is provided to illustrate these findings.</div></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"17 ","pages":"Article 100497"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720724001279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
A novel approach is proposed for designing control strategies for time-varying cyber–physical systems (CPSs) with unknown dynamics, eliminating the need for system identification. Combining with the dynamic-triggered strategies (DTSs), the closed-loop system is parameterized using matrices that are depended on data obtained from a collection of input-state trajectories gathered offline. Additionally, the problem of data-driven optimization control is elegantly resolved through the utilization of classical linear quadratic regulator (LQR) technology, showcasing a remarkable innovation by obviating the necessity for the specific mathematical model of CPSs proposed in this paper. A numerical illustration is provided to illustrate these findings.