Trajectory design of UAV-aided energy-harvesting relay networks in the terahertz band

IF 4.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Saifur Rahman Sabuj , Yeongi Cho , Mahmoud Elsharief , Han-Shin Jo
{"title":"Trajectory design of UAV-aided energy-harvesting relay networks in the terahertz band","authors":"Saifur Rahman Sabuj ,&nbsp;Yeongi Cho ,&nbsp;Mahmoud Elsharief ,&nbsp;Han-Shin Jo","doi":"10.1016/j.comcom.2024.108007","DOIUrl":null,"url":null,"abstract":"<div><div>Unmanned aerial vehicle (UAV)-aided relaying benefits from easy deployment, strong communication channels, and mobility compared with traditional ground relaying, thereby enhancing the wireless connectivity of future industrial Internet of Things networks. In this paper, a UAV-assisted relay network capable of harvesting energy from a source is designed by exploiting the radio frequency band and transmitting information between the transmitter and corresponding receiver utilizing the terahertz (THz) band. Subsequently, the channel capacity is analytically derived using the finite blocklength theorem for THz communication. In addition, we formulate an optimization problem to determine the optimal location of the UAV to maintain the minimum channel capacity between the transmitter and receiver pair. To determine the optimal location, we employ the augmented Lagrange multiplier approach. Regarding the optimal location, we propose an algorithm for two UAV trajectories, namely forward and backward trajectories, that employs modified minimal jerk trajectories. The numerical results indicate that the backward trajectory provides better system performance in terms of channel capacity. Moreover, the simulation findings show that in urban, dense urban, and high-rise areas, the backward trajectory improves upon the forward trajectory by approximately 41.07%, 59.02%, and 76.47%, respectively, while using a blocklength of 400 bytes.</div></div>","PeriodicalId":55224,"journal":{"name":"Computer Communications","volume":"230 ","pages":"Article 108007"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140366424003542","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Unmanned aerial vehicle (UAV)-aided relaying benefits from easy deployment, strong communication channels, and mobility compared with traditional ground relaying, thereby enhancing the wireless connectivity of future industrial Internet of Things networks. In this paper, a UAV-assisted relay network capable of harvesting energy from a source is designed by exploiting the radio frequency band and transmitting information between the transmitter and corresponding receiver utilizing the terahertz (THz) band. Subsequently, the channel capacity is analytically derived using the finite blocklength theorem for THz communication. In addition, we formulate an optimization problem to determine the optimal location of the UAV to maintain the minimum channel capacity between the transmitter and receiver pair. To determine the optimal location, we employ the augmented Lagrange multiplier approach. Regarding the optimal location, we propose an algorithm for two UAV trajectories, namely forward and backward trajectories, that employs modified minimal jerk trajectories. The numerical results indicate that the backward trajectory provides better system performance in terms of channel capacity. Moreover, the simulation findings show that in urban, dense urban, and high-rise areas, the backward trajectory improves upon the forward trajectory by approximately 41.07%, 59.02%, and 76.47%, respectively, while using a blocklength of 400 bytes.
太赫兹波段无人机辅助能量收集中继网络的轨迹设计
与传统的地面中继相比,无人机(UAV)辅助中继具有部署简便、通信信道强大和移动性强等优点,从而增强了未来工业物联网网络的无线连接能力。本文设计了一种无人机辅助中继网络,该网络能够利用无线电频段从信号源采集能量,并利用太赫兹(THz)频段在发射器和相应接收器之间传输信息。随后,利用太赫兹通信的有限块长定理分析得出了信道容量。此外,我们还提出了一个优化问题,以确定无人机的最佳位置,从而保持发射器和接收器之间的最小信道容量。为了确定最佳位置,我们采用了增强拉格朗日乘法器方法。关于最佳位置,我们针对两种无人飞行器轨迹(即前向和后向轨迹)提出了一种算法,该算法采用修正的最小颠簸轨迹。数值结果表明,后向轨迹在信道容量方面提供了更好的系统性能。此外,模拟结果表明,在城市、密集城区和高层建筑区,后向轨迹比前向轨迹分别提高了约 41.07%、59.02% 和 76.47%,而使用的块长度为 400 字节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Communications
Computer Communications 工程技术-电信学
CiteScore
14.10
自引率
5.00%
发文量
397
审稿时长
66 days
期刊介绍: Computer and Communications networks are key infrastructures of the information society with high socio-economic value as they contribute to the correct operations of many critical services (from healthcare to finance and transportation). Internet is the core of today''s computer-communication infrastructures. This has transformed the Internet, from a robust network for data transfer between computers, to a global, content-rich, communication and information system where contents are increasingly generated by the users, and distributed according to human social relations. Next-generation network technologies, architectures and protocols are therefore required to overcome the limitations of the legacy Internet and add new capabilities and services. The future Internet should be ubiquitous, secure, resilient, and closer to human communication paradigms. Computer Communications is a peer-reviewed international journal that publishes high-quality scientific articles (both theory and practice) and survey papers covering all aspects of future computer communication networks (on all layers, except the physical layer), with a special attention to the evolution of the Internet architecture, protocols, services, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信