Yong Song , Hongjie Fan , Junfei Liu , Yunxin Liu , Xiaozhou Ye , Ye Ouyang
{"title":"A goal-oriented document-grounded dialogue based on evidence generation","authors":"Yong Song , Hongjie Fan , Junfei Liu , Yunxin Liu , Xiaozhou Ye , Ye Ouyang","doi":"10.1016/j.datak.2024.102378","DOIUrl":null,"url":null,"abstract":"<div><div>Goal-oriented Document-grounded Dialogue (DGD) is used for retrieving specific domain documents, assisting users in document content retrieval, question answering, and document management. Existing methods typically employ keyword extraction and vector space models to understand the content of documents, identify the intent of questions, and generate answers based on the capabilities of generation models. However, challenges remain in semantic understanding, long text processing, and context understanding. The emergence of Large Language Models (LLMs) has brought new capabilities in context learning and step-by-step reasoning. These models, combined with Retrieval Augmented Generation(RAG) methods, have made significant breakthroughs in text comprehension, intent detection, language organization, offering exciting prospects for DGD research. However, the “hallucination” issue arising from LLMs requires complementary methods to ensure the credibility of their outputs. In this paper we propose a goal-oriented document-grounded dialogue approach based on evidence generation using LLMs. It designs and implements methods for document content retrieval & reranking, fine-tuning and inference, and evidence generation. Through experiments, the method of combining LLMs with vector space model, or with key information matching technique is used as a comparison, the accuracy of the proposed method is improved by 21.91% and 12.81%, while the comprehensiveness is increased by 10.89% and 69.83%, coherence is enhanced by 38.98% and 53.27%, and completeness is boosted by 16.13% and 36.97%, respectively, on average. Additional, ablation analysis conducted reveals that the evidence generation method also contributes significantly to the comprehensiveness and completeness.</div></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"155 ","pages":"Article 102378"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X24001022","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Goal-oriented Document-grounded Dialogue (DGD) is used for retrieving specific domain documents, assisting users in document content retrieval, question answering, and document management. Existing methods typically employ keyword extraction and vector space models to understand the content of documents, identify the intent of questions, and generate answers based on the capabilities of generation models. However, challenges remain in semantic understanding, long text processing, and context understanding. The emergence of Large Language Models (LLMs) has brought new capabilities in context learning and step-by-step reasoning. These models, combined with Retrieval Augmented Generation(RAG) methods, have made significant breakthroughs in text comprehension, intent detection, language organization, offering exciting prospects for DGD research. However, the “hallucination” issue arising from LLMs requires complementary methods to ensure the credibility of their outputs. In this paper we propose a goal-oriented document-grounded dialogue approach based on evidence generation using LLMs. It designs and implements methods for document content retrieval & reranking, fine-tuning and inference, and evidence generation. Through experiments, the method of combining LLMs with vector space model, or with key information matching technique is used as a comparison, the accuracy of the proposed method is improved by 21.91% and 12.81%, while the comprehensiveness is increased by 10.89% and 69.83%, coherence is enhanced by 38.98% and 53.27%, and completeness is boosted by 16.13% and 36.97%, respectively, on average. Additional, ablation analysis conducted reveals that the evidence generation method also contributes significantly to the comprehensiveness and completeness.
期刊介绍:
Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.