Myungha Cho , Hanju Kim , Seungwan Park , Doyoung Kim, Doyoon Kim, Unil Yun
{"title":"Advanced approach for mining utility occupancy patterns in incremental environment","authors":"Myungha Cho , Hanju Kim , Seungwan Park , Doyoung Kim, Doyoon Kim, Unil Yun","doi":"10.1016/j.knosys.2024.112713","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, one of the varied fields of mining techniques that can discover valuable patterns from databases with vast amounts of data, utility pattern mining, has been studied. Besides, pattern mining techniques considering utility occupancy have been developed, considering the profit, quantity, and proportion of the pattern in transactions. However, recent pattern mining studies for utility occupancy still suffer from obtaining patterns in an incremental environment. Meanwhile, with the widespread adoption of technologies such as IoT or networks, data is rapidly generated and accumulated between devices in real time. Therefore, we suggest IUOIL (Incremental high-Utility Occupancy pattern mining with Indexed List) that discovers patterns having high utility occupancy employing an indexed list-based data structure from databases in an incremental environment. Our algorithm can obtain results by quickening the combination process for patterns using the data structure and reducing search space with three efficient pruning strategies. Performance evaluation is performed using various datasets for comparison with existing algorithms. The assessment on real datasets demonstrated that the technique extracts exact results with the fastest runtime while minimizing memory consumption. In addition, the evaluations on synthetic datasets showed that the technique discovers result set of patterns efficiently and stably as the volume of a database increases.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"306 ","pages":"Article 112713"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124013479","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, one of the varied fields of mining techniques that can discover valuable patterns from databases with vast amounts of data, utility pattern mining, has been studied. Besides, pattern mining techniques considering utility occupancy have been developed, considering the profit, quantity, and proportion of the pattern in transactions. However, recent pattern mining studies for utility occupancy still suffer from obtaining patterns in an incremental environment. Meanwhile, with the widespread adoption of technologies such as IoT or networks, data is rapidly generated and accumulated between devices in real time. Therefore, we suggest IUOIL (Incremental high-Utility Occupancy pattern mining with Indexed List) that discovers patterns having high utility occupancy employing an indexed list-based data structure from databases in an incremental environment. Our algorithm can obtain results by quickening the combination process for patterns using the data structure and reducing search space with three efficient pruning strategies. Performance evaluation is performed using various datasets for comparison with existing algorithms. The assessment on real datasets demonstrated that the technique extracts exact results with the fastest runtime while minimizing memory consumption. In addition, the evaluations on synthetic datasets showed that the technique discovers result set of patterns efficiently and stably as the volume of a database increases.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.