Shuai Liu , Haiyang Yu , Han Jiang , Zhenliang Ma , Zhiyong Cui , Yilong Ren
{"title":"MuGIL: A Multi-Graph Interaction Learning Network for Multi-Task Traffic Prediction","authors":"Shuai Liu , Haiyang Yu , Han Jiang , Zhenliang Ma , Zhiyong Cui , Yilong Ren","doi":"10.1016/j.knosys.2024.112709","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, multi-task traffic prediction has received increasing attention, as it enables knowledge sharing between heterogeneous variables or regions, thereby improving prediction accuracy while satisfying the prediction requirements of multi-source data in Intelligent Transportation Systems (ITS). However, current studies present two significant challenges. First, they often tend to construct specialized models for a limited set of predictive parameters, which results in a lack of generality. Second, modeling the graph-based multi-task interaction and message passing processes remains difficult due to the heterogeneity of graph structures arising from multi-source traffic data. To address these challenges, this paper proposes a Multi-Graph Interaction Learning Network (MuGIL), characterized by three key innovations: 1) A flexible end-to-end multi-task prediction framework that is generalizable for varied variables or scenarios; 2) A multi-source graph representation module that aligns heterogeneous information through semantic graphs; 3) A novel message passing mechanism for multi-task graph neural networks, which enables effective knowledge among tasks. The model is validated using data from California by comparing it with the state-of-the-art prediction models. The results show that the MuGIL model achieves better prediction performance than these baselines. Ablation experiments further highlight the critical role of the designed multi-source graph representation module and message passing mechanism in the model's success. The MuGIL model we have proposed is now open-sourced at the following link: <span><span>https://github.com/trafficpre/MuGIL</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"306 ","pages":"Article 112709"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124013431","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, multi-task traffic prediction has received increasing attention, as it enables knowledge sharing between heterogeneous variables or regions, thereby improving prediction accuracy while satisfying the prediction requirements of multi-source data in Intelligent Transportation Systems (ITS). However, current studies present two significant challenges. First, they often tend to construct specialized models for a limited set of predictive parameters, which results in a lack of generality. Second, modeling the graph-based multi-task interaction and message passing processes remains difficult due to the heterogeneity of graph structures arising from multi-source traffic data. To address these challenges, this paper proposes a Multi-Graph Interaction Learning Network (MuGIL), characterized by three key innovations: 1) A flexible end-to-end multi-task prediction framework that is generalizable for varied variables or scenarios; 2) A multi-source graph representation module that aligns heterogeneous information through semantic graphs; 3) A novel message passing mechanism for multi-task graph neural networks, which enables effective knowledge among tasks. The model is validated using data from California by comparing it with the state-of-the-art prediction models. The results show that the MuGIL model achieves better prediction performance than these baselines. Ablation experiments further highlight the critical role of the designed multi-source graph representation module and message passing mechanism in the model's success. The MuGIL model we have proposed is now open-sourced at the following link: https://github.com/trafficpre/MuGIL.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.