Zdeněk Stuchlík, Jaroslav Vrba, Martin Kološ, Arman Tursunov
{"title":"Radiative back-reaction on charged particle motion in the dipole magnetosphere of neutron stars","authors":"Zdeněk Stuchlík, Jaroslav Vrba, Martin Kološ, Arman Tursunov","doi":"10.1016/j.jheap.2024.11.006","DOIUrl":null,"url":null,"abstract":"<div><div>The motion of charged particles under the Lorentz force in the magnetosphere of neutron stars, represented by a dipole field in the Schwarzschild spacetime, can be determined by an effective potential, whose local extrema govern circular orbits both in and off the equatorial plane, which coincides with the symmetry plane of the dipole field. In this work, we provide a detailed description of the properties of these “conservative” circular orbits and, using the approximation represented by the Landau-Lifshitz equation, examine the role of the radiative back-reaction force that influences the motion of charged particles following both the in and off equatorial circular orbits, as well as the chaotic orbits confined to belts centered around the circular orbits. To provide clear insight into these dynamics, we compare particle motion with and without the back-reaction force. We demonstrate that, in the case of an attractive Lorentz force, the back-reaction leads to the charged particles falling onto the neutron star's surface in all scenarios considered. For the repulsive Lorentz force, in combination with the back-reaction force, we observe a widening of stable equatorial circular orbits; the off-equatorial orbits shift toward the equatorial plane and subsequently widen if they are sufficiently close to the plane. Otherwise, the off-equatorial orbits evolve toward the neutron star surface. The critical latitude, which separates orbital widening from falling onto the surface, is determined numerically as a function of the electromagnetic interaction's intensity.</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"44 ","pages":"Pages 500-530"},"PeriodicalIF":10.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214404824001198","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The motion of charged particles under the Lorentz force in the magnetosphere of neutron stars, represented by a dipole field in the Schwarzschild spacetime, can be determined by an effective potential, whose local extrema govern circular orbits both in and off the equatorial plane, which coincides with the symmetry plane of the dipole field. In this work, we provide a detailed description of the properties of these “conservative” circular orbits and, using the approximation represented by the Landau-Lifshitz equation, examine the role of the radiative back-reaction force that influences the motion of charged particles following both the in and off equatorial circular orbits, as well as the chaotic orbits confined to belts centered around the circular orbits. To provide clear insight into these dynamics, we compare particle motion with and without the back-reaction force. We demonstrate that, in the case of an attractive Lorentz force, the back-reaction leads to the charged particles falling onto the neutron star's surface in all scenarios considered. For the repulsive Lorentz force, in combination with the back-reaction force, we observe a widening of stable equatorial circular orbits; the off-equatorial orbits shift toward the equatorial plane and subsequently widen if they are sufficiently close to the plane. Otherwise, the off-equatorial orbits evolve toward the neutron star surface. The critical latitude, which separates orbital widening from falling onto the surface, is determined numerically as a function of the electromagnetic interaction's intensity.
期刊介绍:
The journal welcomes manuscripts on theoretical models, simulations, and observations of highly energetic astrophysical objects both in our Galaxy and beyond. Among those, black holes at all scales, neutron stars, pulsars and their nebula, binaries, novae and supernovae, their remnants, active galaxies, and clusters are just a few examples. The journal will consider research across the whole electromagnetic spectrum, as well as research using various messengers, such as gravitational waves or neutrinos. Effects of high-energy phenomena on cosmology and star-formation, results from dedicated surveys expanding the knowledge of extreme environments, and astrophysical implications of dark matter are also welcomed topics.