RDSM: Underwater multi-AUV relay deployment and selection mechanism in 3D space

Yafei Liu , Na Liu , Hao Li , Yi Jiang , Junwu zhu
{"title":"RDSM: Underwater multi-AUV relay deployment and selection mechanism in 3D space","authors":"Yafei Liu ,&nbsp;Na Liu ,&nbsp;Hao Li ,&nbsp;Yi Jiang ,&nbsp;Junwu zhu","doi":"10.1016/j.cogr.2024.11.001","DOIUrl":null,"url":null,"abstract":"<div><div>Underwater Wireless Sensor Networks (UWSNs) are widely used in naval military field and marine resource exploration. However, challenges such as resource inefficiency and unbalanced energy consumption severely hinder their practical applications. In this paper, we establish a model of underwater multi-hop wireless sensor network with multiple AUVs as relay nodes, which describes the data transmission process within the network. Based on this, an underwater multi-AUV Relay Deployment and Selection Mechanism in 3D space (RDSM) is proposed to achieve efficient underwater networking. Specifically, the RDSM includes the following key components. Firstly, an optimized relay node deployment strategy (RNDS) is used to deploy AUV nodes to effectively ensure network connectivity. Compared with traditional methods, this strategy has unique advantages in considering underwater space characteristics and can better adapt to the complex underwater environment. Secondly, a new utility function is constructed by integrating factors such as throughput, energy consumption, and load. The relay selection strategy based on utility maximization (RSS-UM) is used to select the next-hop relay node. This strategy is innovative in improving relay selection efficiency and optimizing network performance. Finally, in response to the problem of rapid energy consumption of relay nodes close to the base station, a power adjustment scheme is introduced to achieve a balance in node energy consumption, which is of great significance for prolonging network lifetime and improving overall stability. Experimental results show that compared with existing methods, the proposed mechanism achieves high utility and throughput, while maintaining balanced node energy consumption.</div></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"4 ","pages":"Pages 204-216"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241324000144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Underwater Wireless Sensor Networks (UWSNs) are widely used in naval military field and marine resource exploration. However, challenges such as resource inefficiency and unbalanced energy consumption severely hinder their practical applications. In this paper, we establish a model of underwater multi-hop wireless sensor network with multiple AUVs as relay nodes, which describes the data transmission process within the network. Based on this, an underwater multi-AUV Relay Deployment and Selection Mechanism in 3D space (RDSM) is proposed to achieve efficient underwater networking. Specifically, the RDSM includes the following key components. Firstly, an optimized relay node deployment strategy (RNDS) is used to deploy AUV nodes to effectively ensure network connectivity. Compared with traditional methods, this strategy has unique advantages in considering underwater space characteristics and can better adapt to the complex underwater environment. Secondly, a new utility function is constructed by integrating factors such as throughput, energy consumption, and load. The relay selection strategy based on utility maximization (RSS-UM) is used to select the next-hop relay node. This strategy is innovative in improving relay selection efficiency and optimizing network performance. Finally, in response to the problem of rapid energy consumption of relay nodes close to the base station, a power adjustment scheme is introduced to achieve a balance in node energy consumption, which is of great significance for prolonging network lifetime and improving overall stability. Experimental results show that compared with existing methods, the proposed mechanism achieves high utility and throughput, while maintaining balanced node energy consumption.
RDSM:三维空间中的水下多AUV中继部署和选择机制
水下无线传感器网络(UWSN)广泛应用于海军军事领域和海洋资源勘探。然而,资源效率低下和能量消耗不均衡等挑战严重阻碍了其实际应用。本文建立了一个以多个 AUV 为中继节点的水下多跳无线传感器网络模型,描述了网络内的数据传输过程。在此基础上,提出了一种三维空间水下多 AUV 中继部署与选择机制(RDSM),以实现高效的水下联网。具体来说,RDSM 包括以下关键部分。首先,采用优化的中继节点部署策略(RNDS)来部署 AUV 节点,以有效确保网络连接。与传统方法相比,该策略在考虑水下空间特性方面具有独特优势,能更好地适应复杂的水下环境。其次,综合吞吐量、能耗和负载等因素构建了新的效用函数。基于效用最大化的中继选择策略(RSS-UM)用于选择下一跳中继节点。该策略在提高中继选择效率和优化网络性能方面具有创新性。最后,针对靠近基站的中继节点能量消耗快的问题,引入了功率调整方案,以实现节点能量消耗的平衡,这对延长网络寿命和提高整体稳定性具有重要意义。实验结果表明,与现有方法相比,所提出的机制在保持节点能量消耗平衡的同时,实现了较高的效用和吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信