Mozhgan Rezaie Manavand , Mohammad Hosien Salarifar , Mohammad Ghavami , Mehran Taghipour-Gorjikolaie
{"title":"Driver’s facial expression recognition by using deep local and global features","authors":"Mozhgan Rezaie Manavand , Mohammad Hosien Salarifar , Mohammad Ghavami , Mehran Taghipour-Gorjikolaie","doi":"10.1016/j.ins.2024.121658","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding drivers’ emotions is crucial for safety and comfort in autonomous vehicles. While Facial Expression Recognition (FER) systems perform well in controlled environments, struggle in real driving situations. To address this challenge, an Interlaced Local Attention Block within a Convolutional Neural Network (ILAB-CNN) model has been proposed to analyze drivers’ emotions. In real-world scenarios, not all facial regions contribute equally to expressing emotions; specific areas or combinations are key. Inspired by the attention mechanism, an ILAB and a Modified Squeeze-and-Excitation (MSE) block has been proposed to learn more discriminative features. The MSE block applies a self-attention mechanism on the channels, effectively identifying key features by incorporating global information and discarding irrelevant features. ILAB employs the MSE and encoder-decoder structures for region-channel specific attention in one branch and combines it with the obtained feature map of the MSE from the other branch. The proposed approach successfully captures essential information from facial expressions while utilizing a reduced number of parameters, leading to significantly improved recognition accuracy and recognition time for real-time applications. Evaluated on diverse datasets, our method shows 75.3 % recognition rate on FER-2013, 85.06 % on RAF-DB, and 98.8 % on KMU-FED, demonstrating its potential to advance FER technology.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"692 ","pages":"Article 121658"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002002552401572X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding drivers’ emotions is crucial for safety and comfort in autonomous vehicles. While Facial Expression Recognition (FER) systems perform well in controlled environments, struggle in real driving situations. To address this challenge, an Interlaced Local Attention Block within a Convolutional Neural Network (ILAB-CNN) model has been proposed to analyze drivers’ emotions. In real-world scenarios, not all facial regions contribute equally to expressing emotions; specific areas or combinations are key. Inspired by the attention mechanism, an ILAB and a Modified Squeeze-and-Excitation (MSE) block has been proposed to learn more discriminative features. The MSE block applies a self-attention mechanism on the channels, effectively identifying key features by incorporating global information and discarding irrelevant features. ILAB employs the MSE and encoder-decoder structures for region-channel specific attention in one branch and combines it with the obtained feature map of the MSE from the other branch. The proposed approach successfully captures essential information from facial expressions while utilizing a reduced number of parameters, leading to significantly improved recognition accuracy and recognition time for real-time applications. Evaluated on diverse datasets, our method shows 75.3 % recognition rate on FER-2013, 85.06 % on RAF-DB, and 98.8 % on KMU-FED, demonstrating its potential to advance FER technology.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.