{"title":"MEEF criterion-based spline adaptive filtering algorithm and its application","authors":"Haiquan Zhao , Yuan Gao","doi":"10.1016/j.ins.2024.121662","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an innovative the minimum error entropy with fiducial points (MEEF)-based spline adaptive filtering (S-AF) algorithm, called SAF-MEEF algorithm, which outperforms the conventional SAF algorithms that use the mean square error (MSE) criterion in reducing non-Gaussian interference. To overcome the limitation of the fixed step-size, a variable step-size strategy is also developed, resulting in the SAF-VMEEF algorithm, which improves the convergence speed and steady-state error performance. Furthermore, the computational complexity and convergence analysis of the SAF-MEEF are discussed. Nonlinear system identification simulations test the performance of the presented algorithms. Furthermore, this article accomplishes the application of nonlinear active noise control (ANC). Their effectiveness and robustness against non-Gaussian noise are demonstrated in different experimental scenarios, including α-stable noise, real-world functional magnetic resonance imaging (fMRI) noise, and real-life server room (SR) noise.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"692 ","pages":"Article 121662"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524015767","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an innovative the minimum error entropy with fiducial points (MEEF)-based spline adaptive filtering (S-AF) algorithm, called SAF-MEEF algorithm, which outperforms the conventional SAF algorithms that use the mean square error (MSE) criterion in reducing non-Gaussian interference. To overcome the limitation of the fixed step-size, a variable step-size strategy is also developed, resulting in the SAF-VMEEF algorithm, which improves the convergence speed and steady-state error performance. Furthermore, the computational complexity and convergence analysis of the SAF-MEEF are discussed. Nonlinear system identification simulations test the performance of the presented algorithms. Furthermore, this article accomplishes the application of nonlinear active noise control (ANC). Their effectiveness and robustness against non-Gaussian noise are demonstrated in different experimental scenarios, including α-stable noise, real-world functional magnetic resonance imaging (fMRI) noise, and real-life server room (SR) noise.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.