{"title":"An insightful data-driven crowd simulation model based on rough sets","authors":"Tomasz Hachaj, Jarosław Wąs","doi":"10.1016/j.ins.2024.121670","DOIUrl":null,"url":null,"abstract":"<div><div>Data-driven crowd simulation with insightful principles is an open, real-world, and challenging task. The issues involved in modeling crowd movement so that agents' decision-making processes can be interpreted provide opportunities to learn about the mechanisms of crowd formation and dispersion and how groups cope with overcoming obstacles. In this article, we propose a novel agent-based simulation algorithm to infer practical knowledge of a problem from the real world by modeling the domain knowledge available to an agent using rough sets. As far as we know, the method proposed in our work is the first approach that integrates a well-established agent-based simulation model of social forces, an insightful knowledge representation using rough sets, and Bayes probability inference that models the stochastic nature of motion. Our approach has been tested on real datasets representing crowds traversing bottlenecks of varying widths. We also conducted a test on numerous artificial datasets involving 1,000 agents. We obtained satisfactory results that confirm the effectiveness of the proposed method. The dataset and source codes are available for download so our experiments can be reproduced.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"692 ","pages":"Article 121670"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524015846","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Data-driven crowd simulation with insightful principles is an open, real-world, and challenging task. The issues involved in modeling crowd movement so that agents' decision-making processes can be interpreted provide opportunities to learn about the mechanisms of crowd formation and dispersion and how groups cope with overcoming obstacles. In this article, we propose a novel agent-based simulation algorithm to infer practical knowledge of a problem from the real world by modeling the domain knowledge available to an agent using rough sets. As far as we know, the method proposed in our work is the first approach that integrates a well-established agent-based simulation model of social forces, an insightful knowledge representation using rough sets, and Bayes probability inference that models the stochastic nature of motion. Our approach has been tested on real datasets representing crowds traversing bottlenecks of varying widths. We also conducted a test on numerous artificial datasets involving 1,000 agents. We obtained satisfactory results that confirm the effectiveness of the proposed method. The dataset and source codes are available for download so our experiments can be reproduced.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.