Nonlinear interpolated Variational Autoencoder for generalized fluid content estimation

0 ENERGY & FUELS
Hasan Asyari Arief , Peter James Thomas , Weichang Li , Christian Brekken , Magnus Hjelstuen , Ivar Eskerud Smith , Steinar Kragset , Aggelos Katsaggelos
{"title":"Nonlinear interpolated Variational Autoencoder for generalized fluid content estimation","authors":"Hasan Asyari Arief ,&nbsp;Peter James Thomas ,&nbsp;Weichang Li ,&nbsp;Christian Brekken ,&nbsp;Magnus Hjelstuen ,&nbsp;Ivar Eskerud Smith ,&nbsp;Steinar Kragset ,&nbsp;Aggelos Katsaggelos","doi":"10.1016/j.geoen.2024.213474","DOIUrl":null,"url":null,"abstract":"<div><div>Generalizing machine learning models for petroleum applications, especially in scenarios with limited and less varied training data compared to real-world conditions, remains a persistent challenge. This study introduces a novel method combining interpolation mixup with a Variational Autoencoder (VAE) and adaptable interpolation loss for downstream regression tasks. By implementing this approach, we generate high-quality interpolated samples, yielding accurate estimations. Experimental validation on a real-world industrial dataset focused on fluid content measurement demonstrates the superior performance of our method compared to other interpolation and regularization techniques. Our approach achieves over a 15% improvement on generalized out-of-distribution datasets, offering crucial insights for fluid content estimation and practical implications for industrial applications.</div></div>","PeriodicalId":100578,"journal":{"name":"Geoenergy Science and Engineering","volume":"244 ","pages":"Article 213474"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenergy Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949891024008443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Generalizing machine learning models for petroleum applications, especially in scenarios with limited and less varied training data compared to real-world conditions, remains a persistent challenge. This study introduces a novel method combining interpolation mixup with a Variational Autoencoder (VAE) and adaptable interpolation loss for downstream regression tasks. By implementing this approach, we generate high-quality interpolated samples, yielding accurate estimations. Experimental validation on a real-world industrial dataset focused on fluid content measurement demonstrates the superior performance of our method compared to other interpolation and regularization techniques. Our approach achieves over a 15% improvement on generalized out-of-distribution datasets, offering crucial insights for fluid content estimation and practical implications for industrial applications.
用于广义流体含量估算的非线性插值变异自动编码器
将机器学习模型泛化到石油应用中,尤其是在训练数据有限且与真实世界条件相比变化较少的情况下,仍然是一个长期存在的挑战。本研究介绍了一种新方法,它将插值混合与变异自动编码器(VAE)和可调整的插值损失相结合,用于下游回归任务。通过采用这种方法,我们生成了高质量的插值样本,从而获得了准确的估计结果。在以流体含量测量为重点的真实世界工业数据集上进行的实验验证表明,与其他插值和正则化技术相比,我们的方法性能优越。我们的方法在广义分布外数据集上取得了超过 15% 的改进,为流体含量估算提供了重要见解,并对工业应用产生了实际影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信