{"title":"A review of the global operational geostationary meteorological satellites","authors":"Ram Kumar Giri , Satya Prakash , Ramashray Yadav , Nitesh Kaushik , Munn Vinayak Shukla , P.K. Thapliyal , K.C. Saikrishnan","doi":"10.1016/j.rsase.2024.101403","DOIUrl":null,"url":null,"abstract":"<div><div>Geostationary meteorological satellite data and products are proven to be indispensable in operational weather monitoring and forecasting for various sectorial applications and disaster risk reduction due to their large spatial coverage and spatio-temporally consistent availability. The meteorological instruments such as imager or radiometer and atmospheric sounder onboard these satellites have gone through incremental advancement in terms of accuracy, stability, and resolutions. In addition, new meteorological instruments such as lightning detection and ocean monitoring payloads have been developed in the recent decades. This paper reviews brief history of the global operational geostationary meteorological satellites and onboard meteorological instruments. The capability of currently available operational geostationary meteorological satellites is also highlighted. In order to prepare a global climate data record of geostationary satellite observations, well-calibrated data are essentially required from each operational satellite. The calibration exercises taken up by several satellite agencies under the Global Space-based Inter-Calibration System, and development of global and regional long-term inter-calibrated geostationary climate data records are briefly discussed. Moreover, expected meteorological instruments onboard the proposed next-generation geostationary satellites from different satellite agencies across the globe are summarized.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"37 ","pages":"Article 101403"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Geostationary meteorological satellite data and products are proven to be indispensable in operational weather monitoring and forecasting for various sectorial applications and disaster risk reduction due to their large spatial coverage and spatio-temporally consistent availability. The meteorological instruments such as imager or radiometer and atmospheric sounder onboard these satellites have gone through incremental advancement in terms of accuracy, stability, and resolutions. In addition, new meteorological instruments such as lightning detection and ocean monitoring payloads have been developed in the recent decades. This paper reviews brief history of the global operational geostationary meteorological satellites and onboard meteorological instruments. The capability of currently available operational geostationary meteorological satellites is also highlighted. In order to prepare a global climate data record of geostationary satellite observations, well-calibrated data are essentially required from each operational satellite. The calibration exercises taken up by several satellite agencies under the Global Space-based Inter-Calibration System, and development of global and regional long-term inter-calibrated geostationary climate data records are briefly discussed. Moreover, expected meteorological instruments onboard the proposed next-generation geostationary satellites from different satellite agencies across the globe are summarized.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems