Creep and failure at metal-oxide interfaces

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shen J. Dillon , Ryan M. Schoell , Andrew Wright , Jian Luo , Eugen Rabkin , Khalid Hattar
{"title":"Creep and failure at metal-oxide interfaces","authors":"Shen J. Dillon ,&nbsp;Ryan M. Schoell ,&nbsp;Andrew Wright ,&nbsp;Jian Luo ,&nbsp;Eugen Rabkin ,&nbsp;Khalid Hattar","doi":"10.1016/j.actamat.2024.120563","DOIUrl":null,"url":null,"abstract":"<div><div>Small-scale bicrystal creep experiments were performed on contacts formed via <em>in situ</em> high-temperature diffusion bonding of metal-oxide interfaces including Ag-ZrO<sub>2</sub>, Pd-ZrO<sub>2</sub>, Pt-ZrO<sub>2</sub>, and Ag-high entropy oxide<sub>.</sub> This work characterizes deformation and failure at metal-oxide interfaces during mechanical loading. Interfacial sliding can be activated easily, while tensile interfacial creep was not observed at any condition of stress or temperature measured. Plastic strain, instead, localizes within the metal under tensile loading. A variety of mechanisms for plastic strain occur in the metal including lattice dislocation-mediated plasticity, twinning, low-angle grain boundary formation, and low-angle grain boundary creep. Surface and low-angle grain boundary diffusion occur under conditions where no metal-oxide tensile creep is observed, highlighting the significant differences in their interfacial mechanical response. High-temperature interfacial failure occurs when the mean curvature at the contact neck is approximately zero and the applied stresses comparable to brittle fracture stresses. The brittle fracture stresses were measured to be <span><math><mrow><msub><mi>σ</mi><mi>f</mi></msub><mo>=</mo><mn>180</mn><mo>±</mo><mn>90</mn><mspace></mspace><mi>M</mi><mi>P</mi><mi>a</mi></mrow></math></span> at the Ag-ZrO<sub>2</sub> interface at <span><math><mrow><mn>225</mn><msup><mspace></mspace><mo>∘</mo></msup><mi>C</mi></mrow></math></span>, <span><math><mrow><msub><mi>σ</mi><mi>f</mi></msub><mo>=</mo><mn>460</mn><mo>±</mo><mn>160</mn><mspace></mspace><mi>M</mi><mi>P</mi><mi>a</mi></mrow></math></span> at the Pd-ZrO<sub>2</sub> interface at <span><math><mrow><mn>680</mn><msup><mspace></mspace><mo>∘</mo></msup><mi>C</mi></mrow></math></span>, and <span><math><mrow><msub><mi>σ</mi><mi>f</mi></msub><mo>=</mo><mn>640</mn><mo>±</mo><mn>440</mn><mi>M</mi><mi>P</mi><mi>a</mi></mrow></math></span> at the Pt-ZrO<sub>2</sub> interface at <span><math><mrow><mn>1010</mn><msup><mspace></mspace><mo>∘</mo></msup><mi>C</mi></mrow></math></span>.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"283 ","pages":"Article 120563"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135964542400911X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Small-scale bicrystal creep experiments were performed on contacts formed via in situ high-temperature diffusion bonding of metal-oxide interfaces including Ag-ZrO2, Pd-ZrO2, Pt-ZrO2, and Ag-high entropy oxide. This work characterizes deformation and failure at metal-oxide interfaces during mechanical loading. Interfacial sliding can be activated easily, while tensile interfacial creep was not observed at any condition of stress or temperature measured. Plastic strain, instead, localizes within the metal under tensile loading. A variety of mechanisms for plastic strain occur in the metal including lattice dislocation-mediated plasticity, twinning, low-angle grain boundary formation, and low-angle grain boundary creep. Surface and low-angle grain boundary diffusion occur under conditions where no metal-oxide tensile creep is observed, highlighting the significant differences in their interfacial mechanical response. High-temperature interfacial failure occurs when the mean curvature at the contact neck is approximately zero and the applied stresses comparable to brittle fracture stresses. The brittle fracture stresses were measured to be σf=180±90MPa at the Ag-ZrO2 interface at 225C, σf=460±160MPa at the Pd-ZrO2 interface at 680C, and σf=640±440MPa at the Pt-ZrO2 interface at 1010C.

Abstract Image

金属氧化物界面的蠕变和失效
对金属氧化物界面(包括 Ag-ZrO2、Pd-ZrO2、Pt-ZrO2 和 Ag-高熵氧化物)通过原位高温扩散键形成的接触点进行了小规模双晶蠕变实验。这项研究描述了金属-氧化物界面在机械加载过程中的变形和破坏。界面滑动很容易被激活,而在测量的任何应力或温度条件下都没有观察到拉伸界面蠕变。相反,塑性应变在拉伸载荷作用下会在金属内部产生。金属中产生塑性应变的机制多种多样,包括晶格位错介导的塑性、孪晶、低角度晶界形成和低角度晶界蠕变。在没有观察到金属-氧化物拉伸蠕变的条件下,会出现表面和低角度晶界扩散,这突显了它们在界面机械响应方面的显著差异。当接触颈部的平均曲率约为零,所施加的应力与脆性断裂应力相当时,就会发生高温界面破坏。在 225∘C时,Ag-ZrO2界面的脆性断裂应力为σf=180±90MPa;在 680∘C时,Pd-ZrO2界面的脆性断裂应力为σf=460±160MPa;在 1010∘C时,Pt-ZrO2界面的脆性断裂应力为σf=640±440MPa。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信