Unravelling the monomer molar ratio modulation of the optoelectronics of Poly(propylene imine) tetra(thiophen-2-ylmethylene-amine)-co-poly(3-hexylthiophene-2,5-diyl) copolymer

IF 6.7 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Morongwa E. Ramoroka , Kelechi C. Nwambaekwe , Hayelom H. Tesfay , Miranda M. Ndipingwi , Vivian S. John-Denk , Kwena D. Modibane , Samantha F. Douman , Emmanuel I. Iwuoha
{"title":"Unravelling the monomer molar ratio modulation of the optoelectronics of Poly(propylene imine) tetra(thiophen-2-ylmethylene-amine)-co-poly(3-hexylthiophene-2,5-diyl) copolymer","authors":"Morongwa E. Ramoroka ,&nbsp;Kelechi C. Nwambaekwe ,&nbsp;Hayelom H. Tesfay ,&nbsp;Miranda M. Ndipingwi ,&nbsp;Vivian S. John-Denk ,&nbsp;Kwena D. Modibane ,&nbsp;Samantha F. Douman ,&nbsp;Emmanuel I. Iwuoha","doi":"10.1016/j.jsamd.2024.100816","DOIUrl":null,"url":null,"abstract":"<div><div>Tuning the molecular structure of a copolymer is of considerable importance for optimizing its optoelectronic and morphological properties. This will enormously help in improving and understanding the performance of a copolymer as a donor material in organic photovoltaic cells (OPVs). Herein, we reported a simple synthetic approach for developing a polypropylene imine tetra(thiophen-2-ylmethylene-amine)-<em>co</em>-poly(3-hexylthiophene-2,5-diyl) (P3HT-PT) using chemical oxidation polymerization. To the best of our knowledge, the investigations of monomer molar ratio have never been reported for synthesis of dendritic copolymers. Different concentrations of hexylthiophene (3HT) as a monomer for poly(3-hexylthiophene (P3HT) chains growth on the branches of polypropylene imine tetra(thiophen-2-ylmethylene-amine) (PPIT) as a dendritic core were studied. Nuclear magnetic resonance spectroscopy (NMR) confirmed that P3HT-PT has mixture of P3HT chains arrangements with different chain lengths. More head-to-tail arrangement was achieved at low concentration of 3HT. This study revealed that concentration of 3HT alter with optical, microscopic, electrochemical and thermal properties of P3HT-PT. Synthesized P3HT-PT polymers were further investigated as donor materials in OPVs. The investigations indicated that the P3HT-PT40 based OPV has better photovoltaic performance due to fewer aggregates and high crystallinity of P3HT-PT40, low LUMO energy levels offset and sufficient charge separation in comparison with P3HT-PT60 and P3HT-PT80 based OPVs.</div></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":"9 4","pages":"Article 100816"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468217924001473","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Tuning the molecular structure of a copolymer is of considerable importance for optimizing its optoelectronic and morphological properties. This will enormously help in improving and understanding the performance of a copolymer as a donor material in organic photovoltaic cells (OPVs). Herein, we reported a simple synthetic approach for developing a polypropylene imine tetra(thiophen-2-ylmethylene-amine)-co-poly(3-hexylthiophene-2,5-diyl) (P3HT-PT) using chemical oxidation polymerization. To the best of our knowledge, the investigations of monomer molar ratio have never been reported for synthesis of dendritic copolymers. Different concentrations of hexylthiophene (3HT) as a monomer for poly(3-hexylthiophene (P3HT) chains growth on the branches of polypropylene imine tetra(thiophen-2-ylmethylene-amine) (PPIT) as a dendritic core were studied. Nuclear magnetic resonance spectroscopy (NMR) confirmed that P3HT-PT has mixture of P3HT chains arrangements with different chain lengths. More head-to-tail arrangement was achieved at low concentration of 3HT. This study revealed that concentration of 3HT alter with optical, microscopic, electrochemical and thermal properties of P3HT-PT. Synthesized P3HT-PT polymers were further investigated as donor materials in OPVs. The investigations indicated that the P3HT-PT40 based OPV has better photovoltaic performance due to fewer aggregates and high crystallinity of P3HT-PT40, low LUMO energy levels offset and sufficient charge separation in comparison with P3HT-PT60 and P3HT-PT80 based OPVs.
揭示聚(丙亚胺)四(噻吩-2-基亚甲基胺)-共聚(3-己基噻吩-2,5-二基)共聚物的单体摩尔比对光电子学的影响
调整共聚物的分子结构对于优化其光电和形态特性相当重要。这将大大有助于改善和了解共聚物作为有机光伏电池(OPV)供体材料的性能。在此,我们报告了一种利用化学氧化聚合法开发聚丙烯亚胺四(噻吩-2-基亚甲基胺)-共聚(3-己基噻吩-2,5-二基)(P3HT-PT)的简单合成方法。据我们所知,关于树枝状共聚物合成中单体摩尔比的研究还从未报道过。我们研究了不同浓度的己基噻吩(3HT)单体,用于在作为树枝状核的聚丙烯亚胺四(噻吩-2-基亚甲基胺)(PPIT)分支上生长聚(3-己基噻吩(P3HT))链。核磁共振光谱(NMR)证实,P3HT-PT 具有不同链长的 P3HT 链混合排列。在 3HT 浓度较低时,头尾排列更多。这项研究表明,3HT 的浓度会改变 P3HT-PT 的光学、显微、电化学和热学特性。研究人员将合成的 P3HT-PT 聚合物作为 OPV 的供体材料进行了进一步研究。研究表明,与基于 P3HT-PT60 和 P3HT-PT80 的 OPV 相比,基于 P3HT-PT40 的 OPV 具有更好的光电性能,因为 P3HT-PT40 的聚集体少、结晶度高、LUMO 能级偏移低且电荷分离充分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Science: Advanced Materials and Devices
Journal of Science: Advanced Materials and Devices Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
11.90
自引率
2.50%
发文量
88
审稿时长
47 days
期刊介绍: In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research. Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science. With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信