2,3-diferrocenyl-(1-triphenylphosphoranylidene)ketene: Synthesis and interactions with O, C, N, S, Se nucleophiles, characterization and X-ray diffraction
Claudia O. Oliva-Colunga, Jessica J. Sánchez García, Edgar A. Aguilar-Ortiz, Marcos Flores-Alamo, Lena Ruiz-Azuara, Elena I. Klimova
{"title":"2,3-diferrocenyl-(1-triphenylphosphoranylidene)ketene: Synthesis and interactions with O, C, N, S, Se nucleophiles, characterization and X-ray diffraction","authors":"Claudia O. Oliva-Colunga, Jessica J. Sánchez García, Edgar A. Aguilar-Ortiz, Marcos Flores-Alamo, Lena Ruiz-Azuara, Elena I. Klimova","doi":"10.1016/j.jorganchem.2024.123441","DOIUrl":null,"url":null,"abstract":"<div><div>The opening of the ring of 2,3-diferrocenylcyclopropenone <strong>1</strong> with triphenylphosphine was studied to obtain 2,3-diferrocenyl-(3-triphenylphosphoranylidene) ketene <strong>3</strong>. This was subsequently electrophile activated to react with different nucleophiles (<strong>O, C, N, S, Se</strong>) to obtain α,β-unsaturated carbonyl compounds with a preferable selectivity (<em>E</em>), which were stable under environmental conditions. The reduction reaction of the double bond of the α,β-unsaturated carbonyl compound was studied in the presence of hydrogen iodide. The structures of the synthesized compounds were established on the basis of data obtained from <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy and further confirmed by X-ray diffraction analysis.</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1024 ","pages":"Article 123441"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022328X24004364","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The opening of the ring of 2,3-diferrocenylcyclopropenone 1 with triphenylphosphine was studied to obtain 2,3-diferrocenyl-(3-triphenylphosphoranylidene) ketene 3. This was subsequently electrophile activated to react with different nucleophiles (O, C, N, S, Se) to obtain α,β-unsaturated carbonyl compounds with a preferable selectivity (E), which were stable under environmental conditions. The reduction reaction of the double bond of the α,β-unsaturated carbonyl compound was studied in the presence of hydrogen iodide. The structures of the synthesized compounds were established on the basis of data obtained from 1H and 13C NMR spectroscopy and further confirmed by X-ray diffraction analysis.
期刊介绍:
The Journal of Organometallic Chemistry targets original papers dealing with theoretical aspects, structural chemistry, synthesis, physical and chemical properties (including reaction mechanisms), and practical applications of organometallic compounds.
Organometallic compounds are defined as compounds that contain metal - carbon bonds. The term metal includes all alkali and alkaline earth metals, all transition metals and the lanthanides and actinides in the Periodic Table. Metalloids including the elements in Group 13 and the heavier members of the Groups 14 - 16 are also included. The term chemistry includes syntheses, characterizations and reaction chemistry of all such compounds. Research reports based on use of organometallic complexes in bioorganometallic chemistry, medicine, material sciences, homogeneous catalysis and energy conversion are also welcome.
The scope of the journal has been enlarged to encompass important research on organometallic complexes in bioorganometallic chemistry and material sciences, and of heavier main group elements in organometallic chemistry. The journal also publishes review articles, short communications and notes.