Superpixel semantics representation and pre-training for vision–language tasks

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Siyu Zhang , Yeming Chen , Yaoru Sun , Fang Wang , Jun Yang , Lizhi Bai , Shangce Gao
{"title":"Superpixel semantics representation and pre-training for vision–language tasks","authors":"Siyu Zhang ,&nbsp;Yeming Chen ,&nbsp;Yaoru Sun ,&nbsp;Fang Wang ,&nbsp;Jun Yang ,&nbsp;Lizhi Bai ,&nbsp;Shangce Gao","doi":"10.1016/j.neucom.2024.128895","DOIUrl":null,"url":null,"abstract":"<div><div>The key to integrating visual language tasks is to establish a good alignment strategy. Recently, visual semantic representation has achieved fine-grained visual understanding by dividing grids or image patches. However, the coarse-grained semantic interactions in image space should not be ignored, which hinders the extraction of complex contextual semantic relations at the scene boundaries. This paper proposes superpixels as comprehensive and robust visual primitives, which mine coarse-grained semantic interactions by clustering perceptually similar pixels, speeding up the subsequent processing of primitives. To capture superpixel-level semantic features, we propose a Multiscale Difference Graph Convolutional Network (MDGCN). It allows parsing the entire image as a fine-to-coarse visual hierarchy. To reason actual semantic relations, we reduce potential noise interference by aggregating difference information between adjacent graph nodes. Finally, we propose a multi-level fusion rule in a bottom-up manner to avoid understanding deviation by mining complementary spatial information at different levels. Experiments show that the proposed method can effectively promote the learning of multiple downstream tasks. Encouragingly, our method outperforms previous methods on all metrics.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"615 ","pages":"Article 128895"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224016667","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The key to integrating visual language tasks is to establish a good alignment strategy. Recently, visual semantic representation has achieved fine-grained visual understanding by dividing grids or image patches. However, the coarse-grained semantic interactions in image space should not be ignored, which hinders the extraction of complex contextual semantic relations at the scene boundaries. This paper proposes superpixels as comprehensive and robust visual primitives, which mine coarse-grained semantic interactions by clustering perceptually similar pixels, speeding up the subsequent processing of primitives. To capture superpixel-level semantic features, we propose a Multiscale Difference Graph Convolutional Network (MDGCN). It allows parsing the entire image as a fine-to-coarse visual hierarchy. To reason actual semantic relations, we reduce potential noise interference by aggregating difference information between adjacent graph nodes. Finally, we propose a multi-level fusion rule in a bottom-up manner to avoid understanding deviation by mining complementary spatial information at different levels. Experiments show that the proposed method can effectively promote the learning of multiple downstream tasks. Encouragingly, our method outperforms previous methods on all metrics.

Abstract Image

视觉语言任务的超像素语义表示和预训练
整合视觉语言任务的关键在于建立良好的对齐策略。最近,视觉语义表征通过划分网格或图像斑块实现了细粒度的视觉理解。然而,图像空间中的粗粒度语义交互不容忽视,这阻碍了对场景边界复杂语境语义关系的提取。本文提出了超像素作为全面而稳健的视觉基元,通过聚类感知上相似的像素来挖掘粗粒度语义交互,从而加快基元的后续处理速度。为了捕捉超像素级的语义特征,我们提出了多尺度差异图卷积网络(MDGCN)。它可以将整个图像解析为一个从细到粗的视觉层次结构。为了推理实际的语义关系,我们通过聚合相邻图节点之间的差异信息来减少潜在的噪声干扰。最后,我们以自下而上的方式提出了一种多层次融合规则,通过挖掘不同层次的互补空间信息来避免理解偏差。实验表明,所提出的方法能有效促进多个下游任务的学习。令人鼓舞的是,我们的方法在所有指标上都优于之前的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信