Instance-dependent cost-sensitive parametric learning

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jorge C-Rella , Gerda Claeskens , Ricardo Cao , Juan M. Vilar
{"title":"Instance-dependent cost-sensitive parametric learning","authors":"Jorge C-Rella ,&nbsp;Gerda Claeskens ,&nbsp;Ricardo Cao ,&nbsp;Juan M. Vilar","doi":"10.1016/j.neucom.2024.128875","DOIUrl":null,"url":null,"abstract":"<div><div>Instance-dependent cost-sensitive learning addresses classification problems where each observation has a different misclassification cost. In this paper, we propose cost-sensitive parametric models to minimize the expectation of losses. A loss function incorporating the misclassification costs is defined, which serves as the objective function for obtaining cost-sensitive parameter estimators. The consistency and asymptotic normality of these estimators are established under general conditions, theoretically demonstrating their good performance. Additionally, we derive bounds for the bias introduced when regularizing the optimization problem, which is generally necessary in practice. To conclude, the effectiveness of the proposed estimators is evaluated through an extensive novel simulation study and the analysis of five real data sets, further demonstrating their proficiency in practical settings.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"615 ","pages":"Article 128875"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224016461","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Instance-dependent cost-sensitive learning addresses classification problems where each observation has a different misclassification cost. In this paper, we propose cost-sensitive parametric models to minimize the expectation of losses. A loss function incorporating the misclassification costs is defined, which serves as the objective function for obtaining cost-sensitive parameter estimators. The consistency and asymptotic normality of these estimators are established under general conditions, theoretically demonstrating their good performance. Additionally, we derive bounds for the bias introduced when regularizing the optimization problem, which is generally necessary in practice. To conclude, the effectiveness of the proposed estimators is evaluated through an extensive novel simulation study and the analysis of five real data sets, further demonstrating their proficiency in practical settings.
依赖于实例的成本敏感参数学习
依赖于实例的成本敏感学习可以解决每个观测值都有不同误分类成本的分类问题。在本文中,我们提出了成本敏感参数模型,以最小化损失期望。本文定义了一个包含误分类成本的损失函数,作为获得成本敏感参数估计值的目标函数。在一般条件下建立了这些估计器的一致性和渐近正态性,从理论上证明了它们的良好性能。此外,我们还推导出了优化问题正则化时引入的偏差边界,这在实践中通常是必要的。最后,我们通过大量新颖的模拟研究和对五个真实数据集的分析,对所提出的估计器的有效性进行了评估,进一步证明了它们在实际应用中的熟练程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信