CNN explanation methods for ordinal regression tasks

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Javier Barbero-Gómez , Ricardo P.M. Cruz , Jaime S. Cardoso , Pedro A. Gutiérrez , César Hervás-Martínez
{"title":"CNN explanation methods for ordinal regression tasks","authors":"Javier Barbero-Gómez ,&nbsp;Ricardo P.M. Cruz ,&nbsp;Jaime S. Cardoso ,&nbsp;Pedro A. Gutiérrez ,&nbsp;César Hervás-Martínez","doi":"10.1016/j.neucom.2024.128878","DOIUrl":null,"url":null,"abstract":"<div><div>The use of Convolutional Neural Network (CNN) models for image classification tasks has gained significant popularity. However, the lack of interpretability in CNN models poses challenges for debugging and validation. To address this issue, various explanation methods have been developed to provide insights into CNN models. This paper focuses on the validity of these explanation methods for ordinal regression tasks, where the classes have a predefined order relationship. Different modifications are proposed for two explanation methods to exploit the ordinal relationships between classes: Grad-CAM based on Ordinal Binary Decomposition (GradOBD-CAM) and Ordinal Information Bottleneck Analysis (OIBA). The performance of these modified methods is compared to existing popular alternatives. Experimental results demonstrate that GradOBD-CAM outperforms other methods in terms of interpretability for three out of four datasets, while OIBA achieves superior performance compared to IBA.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"615 ","pages":"Article 128878"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224016497","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The use of Convolutional Neural Network (CNN) models for image classification tasks has gained significant popularity. However, the lack of interpretability in CNN models poses challenges for debugging and validation. To address this issue, various explanation methods have been developed to provide insights into CNN models. This paper focuses on the validity of these explanation methods for ordinal regression tasks, where the classes have a predefined order relationship. Different modifications are proposed for two explanation methods to exploit the ordinal relationships between classes: Grad-CAM based on Ordinal Binary Decomposition (GradOBD-CAM) and Ordinal Information Bottleneck Analysis (OIBA). The performance of these modified methods is compared to existing popular alternatives. Experimental results demonstrate that GradOBD-CAM outperforms other methods in terms of interpretability for three out of four datasets, while OIBA achieves superior performance compared to IBA.
用于序数回归任务的 CNN 解释方法
在图像分类任务中使用卷积神经网络(CNN)模型已获得极大的普及。然而,CNN 模型缺乏可解释性,这给调试和验证带来了挑战。为解决这一问题,人们开发了各种解释方法,以深入了解 CNN 模型。本文重点研究了这些解释方法在顺序回归任务中的有效性,在顺序回归任务中,类具有预定义的顺序关系。本文对两种解释方法提出了不同的修改建议,以利用类之间的顺序关系:基于序数二元分解的 Grad-CAM 方法(GradOBD-CAM)和序数信息瓶颈分析方法(OIBA)。这些改进方法的性能与现有的流行替代方法进行了比较。实验结果表明,GradOBD-CAM 在四个数据集中的三个数据集的可解释性方面优于其他方法,而 OIBA 的性能则优于 IBA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信