Ahmed Mutasim Abdalla Mahmoud , Nichole Sheldrick , Muftah Ahmed
{"title":"A novel machine learning automated change detection tool for monitoring disturbances and threats to archaeological sites","authors":"Ahmed Mutasim Abdalla Mahmoud , Nichole Sheldrick , Muftah Ahmed","doi":"10.1016/j.rsase.2024.101396","DOIUrl":null,"url":null,"abstract":"<div><div>Archaeological sites across the globe are facing significant threats and heritage managers are under increasing pressure to monitor and preserve these sites. Since 2015, the EAMENA project has documented more than 200,000 archaeological sites and the disturbances and threats affecting them across the Middle East and North Africa (MENA) region, using a combination of remote sensing, digitization, and fieldwork methodologies. The large number of sites and their often remote or otherwise difficult to access locations makes consistent and regular monitoring of these sites for disturbances and threats a daunting task. Combined with the increasing frequency and severity of threats to archaeological sites, the need to develop novel tools and methods that can rapidly monitor the changes at and around archaeological sites and provide accurate and consistent monitoring has never been more urgent. In this paper, we introduce the EAMENA Machine Learning Automated Change Detection tool (EAMENA MLACD). This newly-developed online tool uses bespoke machine learning algorithms to process sequential satellite images and create land classification maps to detect and identify disturbances and threats in the vicinity of known archaeological sites for the purposes of heritage monitoring and preservation. Initial testing and validation of results from the EAMENA MLACD in a case study in Bani Walid, Libya, demonstrate how it can be used to identify disturbances and potential threats to heritage sites, and increase the speed and efficiency of monitoring activities undertaken by heritage professionals.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"37 ","pages":"Article 101396"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235293852400260X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Archaeological sites across the globe are facing significant threats and heritage managers are under increasing pressure to monitor and preserve these sites. Since 2015, the EAMENA project has documented more than 200,000 archaeological sites and the disturbances and threats affecting them across the Middle East and North Africa (MENA) region, using a combination of remote sensing, digitization, and fieldwork methodologies. The large number of sites and their often remote or otherwise difficult to access locations makes consistent and regular monitoring of these sites for disturbances and threats a daunting task. Combined with the increasing frequency and severity of threats to archaeological sites, the need to develop novel tools and methods that can rapidly monitor the changes at and around archaeological sites and provide accurate and consistent monitoring has never been more urgent. In this paper, we introduce the EAMENA Machine Learning Automated Change Detection tool (EAMENA MLACD). This newly-developed online tool uses bespoke machine learning algorithms to process sequential satellite images and create land classification maps to detect and identify disturbances and threats in the vicinity of known archaeological sites for the purposes of heritage monitoring and preservation. Initial testing and validation of results from the EAMENA MLACD in a case study in Bani Walid, Libya, demonstrate how it can be used to identify disturbances and potential threats to heritage sites, and increase the speed and efficiency of monitoring activities undertaken by heritage professionals.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems