Menghan Zhang , Lu Jiang , Zewen Gu , Chicheng Ma , Yuting Wu , Jianlin Liu
{"title":"Viscous fingering analysis for water-drive oil in the inclined plane","authors":"Menghan Zhang , Lu Jiang , Zewen Gu , Chicheng Ma , Yuting Wu , Jianlin Liu","doi":"10.1016/j.euromechflu.2024.11.005","DOIUrl":null,"url":null,"abstract":"<div><div>Viscous fingering is a common instability event that occurs during the process of water-drive oil for oil recovery, significantly limiting the efficiency of oil extraction. In this study, we propose a film flow model that accounts for the variation in height at the water-oil two phase interface, enabling the calculation and analysis of the triggering mechanism and flow evolution process of this unstable phenomenon. We theoretically derive the equation of water film flow, which can be used to explore the flow evolution of the two-phase interface in the process of oil displacement. By numerically solving the two-dimensional flow equation, we obtain the traveling wave profile and find that the morphology of the two-phase interface is significantly affected by the plane’s inclined angle, capillary number and density ratio of the two-phase liquid. Furthermore, we perform linear stability analysis and finite element numerical simulation considering small initial disturbances to explore the triggering conditions of viscous fingering phenomenon and the full time from gentle displacement to unstable flow. The results reveal that the moving contact line of the driven liquid front is more stable when the viscosity of the oil is less different from the driven liquid and has a smaller density, thereby improving of the driving efficiency in the water-driven oil process. These insights have significant implications for guiding efforts to enhance oil recovery efficiency, and we provide concrete engineering suggestions to achieve this aim.</div></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"109 ","pages":"Pages 414-427"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754624001596","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Viscous fingering is a common instability event that occurs during the process of water-drive oil for oil recovery, significantly limiting the efficiency of oil extraction. In this study, we propose a film flow model that accounts for the variation in height at the water-oil two phase interface, enabling the calculation and analysis of the triggering mechanism and flow evolution process of this unstable phenomenon. We theoretically derive the equation of water film flow, which can be used to explore the flow evolution of the two-phase interface in the process of oil displacement. By numerically solving the two-dimensional flow equation, we obtain the traveling wave profile and find that the morphology of the two-phase interface is significantly affected by the plane’s inclined angle, capillary number and density ratio of the two-phase liquid. Furthermore, we perform linear stability analysis and finite element numerical simulation considering small initial disturbances to explore the triggering conditions of viscous fingering phenomenon and the full time from gentle displacement to unstable flow. The results reveal that the moving contact line of the driven liquid front is more stable when the viscosity of the oil is less different from the driven liquid and has a smaller density, thereby improving of the driving efficiency in the water-driven oil process. These insights have significant implications for guiding efforts to enhance oil recovery efficiency, and we provide concrete engineering suggestions to achieve this aim.
期刊介绍:
The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.