{"title":"Attitude tracking of rigid-liquid-flexible coupling spacecraft by active disturbance rejection control","authors":"Xiaowei Zhang , Shuang Li , He Zhu , Jingji Wang","doi":"10.1016/j.actaastro.2024.10.053","DOIUrl":null,"url":null,"abstract":"<div><div>Considering the complex attitude dynamics of Rigid-Liquid-Flexible Coupling Spacecraft, especially when the large amplitude sloshing of liquid exists in rapid attitude maneuver, the conventional control design method based on the linearized model is not suitable for the significant coupling and strong nonlinearity. By contrast, Active Disturbance Rejection Control is model-independent and easy to design and implement. In this paper, the three main components of Active Disturbance Rejection Control, Tracking Differentiator, Extended State Observer and Nonlinear State Error Feedback are comprehensively applied to the attitude tracking control of Rigid-Liquid-Flexible Coupling Spacecraft. Firstly, two cascaded Tracking Differentiators are used to arrange the transition process of the attitude command, which not only reduces overshoot and oscillation of the tracking process, but also obtains the angular acceleration information of attitude trajectory for feed-forward compensation. Secondly, the total disturbance caused by liquid sloshing and flexible vibration is observed by Extended State Observer and compensated synchronously. Finally, the Nonlinear State Error Feedback is used to further improve the transient behavior and steady-state quality of the control system. The simulation results show that the tracking accuracy of the attitude and angular velocity using the Active Disturbance Rejection Control are about 3–27 times and 6 to 115 times that of the PID control, respectively. The convergence time, overshooting are also significantly less than the PID control.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"226 ","pages":"Pages 913-927"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094576524006271","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Considering the complex attitude dynamics of Rigid-Liquid-Flexible Coupling Spacecraft, especially when the large amplitude sloshing of liquid exists in rapid attitude maneuver, the conventional control design method based on the linearized model is not suitable for the significant coupling and strong nonlinearity. By contrast, Active Disturbance Rejection Control is model-independent and easy to design and implement. In this paper, the three main components of Active Disturbance Rejection Control, Tracking Differentiator, Extended State Observer and Nonlinear State Error Feedback are comprehensively applied to the attitude tracking control of Rigid-Liquid-Flexible Coupling Spacecraft. Firstly, two cascaded Tracking Differentiators are used to arrange the transition process of the attitude command, which not only reduces overshoot and oscillation of the tracking process, but also obtains the angular acceleration information of attitude trajectory for feed-forward compensation. Secondly, the total disturbance caused by liquid sloshing and flexible vibration is observed by Extended State Observer and compensated synchronously. Finally, the Nonlinear State Error Feedback is used to further improve the transient behavior and steady-state quality of the control system. The simulation results show that the tracking accuracy of the attitude and angular velocity using the Active Disturbance Rejection Control are about 3–27 times and 6 to 115 times that of the PID control, respectively. The convergence time, overshooting are also significantly less than the PID control.
期刊介绍:
Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to:
The peaceful scientific exploration of space,
Its exploitation for human welfare and progress,
Conception, design, development and operation of space-borne and Earth-based systems,
In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.