{"title":"Extreme translational impact of triple-shock configurations of blast waves in a confined volume of an orbital station","authors":"M.V. Chernyshov, K.E. Savelova","doi":"10.1016/j.actaastro.2024.11.017","DOIUrl":null,"url":null,"abstract":"<div><div>The translational effects of gas streams, which form after the triple-shock configurations at Mach reflection of blast waves with normal main shock (so-called stationary Mach configurations), were analyzed. Unlike in the case of an elevated explosions of fuel as rocket starts in initially stagnant air, which is considered here as a private case, it was supposed that this shock-wave structure moves in a preceding flow with arbitrary velocity (and corresponding flow Mach number). Analyzing relations of the dynamic pressures across the slipstream, which emanates from the triple point of the Mach reflection, it was shown that the flows after the triple-shock configuration usually differ much in their translational action on surrounding objects. It was found and discussed that some configurations drag the objects initially situated above and below the triple-point trajectory in opposite directions. Moreover, the “trigger” structure was found that remains previous flow drag action on the object above the triple-point trajectory, but switches it to exactly opposite one, if the object is situated below the triple point.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"226 ","pages":"Pages 876-891"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094576524006647","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
The translational effects of gas streams, which form after the triple-shock configurations at Mach reflection of blast waves with normal main shock (so-called stationary Mach configurations), were analyzed. Unlike in the case of an elevated explosions of fuel as rocket starts in initially stagnant air, which is considered here as a private case, it was supposed that this shock-wave structure moves in a preceding flow with arbitrary velocity (and corresponding flow Mach number). Analyzing relations of the dynamic pressures across the slipstream, which emanates from the triple point of the Mach reflection, it was shown that the flows after the triple-shock configuration usually differ much in their translational action on surrounding objects. It was found and discussed that some configurations drag the objects initially situated above and below the triple-point trajectory in opposite directions. Moreover, the “trigger” structure was found that remains previous flow drag action on the object above the triple-point trajectory, but switches it to exactly opposite one, if the object is situated below the triple point.
期刊介绍:
Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to:
The peaceful scientific exploration of space,
Its exploitation for human welfare and progress,
Conception, design, development and operation of space-borne and Earth-based systems,
In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.