{"title":"Insight into the coke alleviation pattern over iron-based and boron-modified HZSM-5 bifunctional catalyst for direct CO2 hydrogenation to aromatics","authors":"Chonghao Chen , Zixin Song , Dianhua Liu","doi":"10.1016/j.apcata.2024.120029","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon dioxide (CO<sub>2</sub>) hydrogenation to aromatics is promising for reducing the burden of petroleum fuels. Herein, iron-based catalyst was mixed with boron modified HZSM-5 with pre-treatment and post-treatment method. The textural, acidic and element distribution properties over zeolite framework and external surface were studied. Combining with characterizations for internal and external coke, the element distribution-acidity-coke-stability relationship over boron-modified zeolite was put forward. Pre-treated zeolite witnessed reduced amount of external and total Brönsted acid sites (BAS) with similar degree, and increase paired Al (Al<sub>pair</sub>) fraction in the intersection site, leading to increased aromatics selectivity and reduced coke amount. While boron post-treatment significantly reduced external surface BAS and inhibited formation of condensed external coke. Afterwards, the mechanism of olefins aromatization was studied and found that PT-Z5-B greatly suppressed the overalkylation of light aromatics, thus alleviating the co-deactivation pattern generated by transformation of coke precursors from zeolite to iron-based catalyst.</div></div>","PeriodicalId":243,"journal":{"name":"Applied Catalysis A: General","volume":"689 ","pages":"Article 120029"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis A: General","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926860X24004745","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon dioxide (CO2) hydrogenation to aromatics is promising for reducing the burden of petroleum fuels. Herein, iron-based catalyst was mixed with boron modified HZSM-5 with pre-treatment and post-treatment method. The textural, acidic and element distribution properties over zeolite framework and external surface were studied. Combining with characterizations for internal and external coke, the element distribution-acidity-coke-stability relationship over boron-modified zeolite was put forward. Pre-treated zeolite witnessed reduced amount of external and total Brönsted acid sites (BAS) with similar degree, and increase paired Al (Alpair) fraction in the intersection site, leading to increased aromatics selectivity and reduced coke amount. While boron post-treatment significantly reduced external surface BAS and inhibited formation of condensed external coke. Afterwards, the mechanism of olefins aromatization was studied and found that PT-Z5-B greatly suppressed the overalkylation of light aromatics, thus alleviating the co-deactivation pattern generated by transformation of coke precursors from zeolite to iron-based catalyst.
期刊介绍:
Applied Catalysis A: General publishes original papers on all aspects of catalysis of basic and practical interest to chemical scientists in both industrial and academic fields, with an emphasis onnew understanding of catalysts and catalytic reactions, new catalytic materials, new techniques, and new processes, especially those that have potential practical implications.
Papers that report results of a thorough study or optimization of systems or processes that are well understood, widely studied, or minor variations of known ones are discouraged. Authors should include statements in a separate section "Justification for Publication" of how the manuscript fits the scope of the journal in the cover letter to the editors. Submissions without such justification will be rejected without review.