A novel implementation of the cohesive zone model for the fatigue propagation of delamination in composites using a sequential static fatigue algorithm
{"title":"A novel implementation of the cohesive zone model for the fatigue propagation of delamination in composites using a sequential static fatigue algorithm","authors":"S. Safaei, A. Bernasconi, M. Carboni, L. Martulli","doi":"10.1016/j.ijfatigue.2024.108712","DOIUrl":null,"url":null,"abstract":"<div><div>Composite materials are particularly exposed to delamination under fatigue loading conditions, which can significantly compromise their structural integrity. The ability to accurately and efficiently estimate the progression of delamination under fatigue is crucial for enhancing the safety and reliability of lightweight composite structures. The aim of this paper is to implement the cohesive elements formulation in a Sequential Static Fatigue (SSF) algorithm named C-SSF. The C-SSF algorithm simulates delamination propagation under fatigue loading by conducting a series of sequential static simulations. The accuracy of the C-SSF method is validated by comparing its results with experimental data from two published case studies. The results demonstrate that this approach can effectively simulate delamination growth under fatigue loading. Compared to a similar approach based on the Virtual Crack Closure Technique (VCCT), the C-SSF algorithm provided superior accuracy, especially when large and curved delamination fronts were involved. The C-SSF method proved its capability to simulate propagation of delamination in composite structures, making it a valuable tool for modelling the fatigue behaviour of other similar structures.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"192 ","pages":"Article 108712"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324005711","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Composite materials are particularly exposed to delamination under fatigue loading conditions, which can significantly compromise their structural integrity. The ability to accurately and efficiently estimate the progression of delamination under fatigue is crucial for enhancing the safety and reliability of lightweight composite structures. The aim of this paper is to implement the cohesive elements formulation in a Sequential Static Fatigue (SSF) algorithm named C-SSF. The C-SSF algorithm simulates delamination propagation under fatigue loading by conducting a series of sequential static simulations. The accuracy of the C-SSF method is validated by comparing its results with experimental data from two published case studies. The results demonstrate that this approach can effectively simulate delamination growth under fatigue loading. Compared to a similar approach based on the Virtual Crack Closure Technique (VCCT), the C-SSF algorithm provided superior accuracy, especially when large and curved delamination fronts were involved. The C-SSF method proved its capability to simulate propagation of delamination in composite structures, making it a valuable tool for modelling the fatigue behaviour of other similar structures.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.