Instability of the solitary wave solutions for the generalized derivative nonlinear Schrödinger equation in the endpoint case

IF 1.3 2区 数学 Q1 MATHEMATICS
Bing Li , Cui Ning
{"title":"Instability of the solitary wave solutions for the generalized derivative nonlinear Schrödinger equation in the endpoint case","authors":"Bing Li ,&nbsp;Cui Ning","doi":"10.1016/j.na.2024.113713","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the stability theory of solitary wave solutions for the generalized derivative nonlinear Schrödinger equation <span><span><span><math><mrow><mi>i</mi><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>+</mo><msubsup><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mi>u</mi><mo>+</mo><mi>i</mi><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn><mi>σ</mi></mrow></msup><msub><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow></msub><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mn>1</mn><mo>&lt;</mo><mi>σ</mi><mo>&lt;</mo><mn>2</mn></mrow></math></span>. The equation has a two-parameter family of solitary wave solutions of the form <span><span><span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>ω</mi><mo>,</mo><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>ω</mi><mi>t</mi><mo>+</mo><mi>i</mi><mfrac><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mrow><mo>(</mo><mi>x</mi><mo>−</mo><mi>c</mi><mi>t</mi><mo>)</mo></mrow><mo>−</mo><mfrac><mrow><mi>i</mi></mrow><mrow><mn>2</mn><mi>σ</mi><mo>+</mo><mn>2</mn></mrow></mfrac><msubsup><mrow><mo>∫</mo></mrow><mrow><mo>−</mo><mi>∞</mi></mrow><mrow><mi>x</mi><mo>−</mo><mi>c</mi><mi>t</mi></mrow></msubsup><msubsup><mrow><mi>φ</mi></mrow><mrow><mi>ω</mi><mo>,</mo><mi>c</mi></mrow><mrow><mn>2</mn><mi>σ</mi></mrow></msubsup><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mi>d</mi><mi>y</mi></mrow></msup><msub><mrow><mi>φ</mi></mrow><mrow><mi>ω</mi><mo>,</mo><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>−</mo><mi>c</mi><mi>t</mi><mo>)</mo></mrow><mo>.</mo></mrow></math></span></span></span>The stability theory in the frequency region of <span><math><mrow><mrow><mo>|</mo><mi>c</mi><mo>|</mo></mrow><mo>&lt;</mo><mn>2</mn><msqrt><mrow><mi>ω</mi></mrow></msqrt></mrow></math></span> was thoroughly studied previously. In this paper, we prove the instability of the solitary wave solutions in the endpoint case <span><math><mrow><mi>c</mi><mo>=</mo><mn>2</mn><msqrt><mrow><mi>ω</mi></mrow></msqrt></mrow></math></span>.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"252 ","pages":"Article 113713"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24002323","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the stability theory of solitary wave solutions for the generalized derivative nonlinear Schrödinger equation itu+x2u+i|u|2σxu=0,where 1<σ<2. The equation has a two-parameter family of solitary wave solutions of the form uω,c(t,x)=eiωt+ic2(xct)i2σ+2xctφω,c2σ(y)dyφω,c(xct).The stability theory in the frequency region of |c|<2ω was thoroughly studied previously. In this paper, we prove the instability of the solitary wave solutions in the endpoint case c=2ω.
端点情况下广义导数非线性薛定谔方程孤波解的不稳定性
我们考虑广义导数非线性薛定谔方程 i∂tu+∂x2u+i|u|2σ∂xu=0 时孤波解的稳定性理论,其中 1<σ<2.该方程有一个二参数孤波解族,其形式为 uω,c(t,x)=eiωt+ic2(x-ct)-i2σ+2∫-∞x-ct-φω,c2σ(y)dyφω,c(x-ct)。之前对|c|<2ω频率区域的稳定性理论进行了深入研究。本文证明了孤波解在端点情况 c=2ω 下的不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信