Lucas Berthet , Philippe Blais , Bernd Nennemann , Christine Monette , Frederick P. Gosselin
{"title":"Mode split prediction for rotating disks with flexible stator coupling","authors":"Lucas Berthet , Philippe Blais , Bernd Nennemann , Christine Monette , Frederick P. Gosselin","doi":"10.1016/j.jfluidstructs.2024.104224","DOIUrl":null,"url":null,"abstract":"<div><div>High-head turbine runners are subject to multiple sources of excitation. Coupled with the added mass of water, rotation induces a mode split in the natural frequencies of runners, where co-rotating and counter-rotating waves travel through the runner at different relative speeds. Disks, by displaying a similar behavior, can be used as a geometrically simpler model. Mode split is characterized for a rotating disk in dense fluid but, in high-head turbines, the runner and the compliant confinement are coupled through the axial gap fluid. In this article, we develop an analytical model of coupled stationary and rotating disks to analyze the effect of their interaction on the mode split phenomenon. First, we apply the potential flow theory, considering the fluid as irrotational, inviscid and incompressible. We assume that the modeshapes of the disk in a dense fluid are similar to their shapes in vacuum. We then derive the potential flows that respect the no-penetration boundary conditions. One after the other, each disk is considered flexible while the other one is rigid. By applying the superposition principle, we then couple the two obtained fluid flows through the structural equations of motion. A finite-element vibro-acoustic modal analysis was developed to verify the analytical model and propose a fast numerical tool for hydraulic turbine design. Analytical results show that rotation induces a split of the coupled rotor–stator frequencies as for a lone rotor, while the ratio of their amplitudes varies slightly. A change in the relative thickness of the rotor and stator affects their individual frequencies in vacuum, and in turn their coupling by the fluid, with a potential shift in dominance.</div></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":"132 ","pages":"Article 104224"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974624001580","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
High-head turbine runners are subject to multiple sources of excitation. Coupled with the added mass of water, rotation induces a mode split in the natural frequencies of runners, where co-rotating and counter-rotating waves travel through the runner at different relative speeds. Disks, by displaying a similar behavior, can be used as a geometrically simpler model. Mode split is characterized for a rotating disk in dense fluid but, in high-head turbines, the runner and the compliant confinement are coupled through the axial gap fluid. In this article, we develop an analytical model of coupled stationary and rotating disks to analyze the effect of their interaction on the mode split phenomenon. First, we apply the potential flow theory, considering the fluid as irrotational, inviscid and incompressible. We assume that the modeshapes of the disk in a dense fluid are similar to their shapes in vacuum. We then derive the potential flows that respect the no-penetration boundary conditions. One after the other, each disk is considered flexible while the other one is rigid. By applying the superposition principle, we then couple the two obtained fluid flows through the structural equations of motion. A finite-element vibro-acoustic modal analysis was developed to verify the analytical model and propose a fast numerical tool for hydraulic turbine design. Analytical results show that rotation induces a split of the coupled rotor–stator frequencies as for a lone rotor, while the ratio of their amplitudes varies slightly. A change in the relative thickness of the rotor and stator affects their individual frequencies in vacuum, and in turn their coupling by the fluid, with a potential shift in dominance.
期刊介绍:
The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved.
The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.