Estimation of wind force time-history using limited floor acceleration responses by modal analysis

IF 3.4 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Daiki Sato , Razelle Dennise A. Soriano , Alex Shegay , Kou Miyamoto , Jinhua She , Kazuhiko Kasai
{"title":"Estimation of wind force time-history using limited floor acceleration responses by modal analysis","authors":"Daiki Sato ,&nbsp;Razelle Dennise A. Soriano ,&nbsp;Alex Shegay ,&nbsp;Kou Miyamoto ,&nbsp;Jinhua She ,&nbsp;Kazuhiko Kasai","doi":"10.1016/j.jfluidstructs.2024.104203","DOIUrl":null,"url":null,"abstract":"<div><div>Time-history analyses are usually performed to design and examine the performance of tall structures subjected to strong wind loading. An accurate estimate of the time history of wind forces is required to carry out time-history analysis. However, previous studies conducted to estimate the time-history of wind forces require a lot of priori information, such as complete structural parameters and wind-induced responses, which are generally not available in actual conditions. This work addresses the estimation of the time-history of wind forces acting on each story of a ten degree-of-freedom model under the assumption that only the mass and acceleration responses measured on three stories are known. First, cubic spline interpolation is used to determine the unknown acceleration responses and frequency domain integration is used to obtain the velocity and displacement responses. Then, unknown structural parameters (particularly stiffness and damping) are estimated by the Frequency Domain Decomposition method. Finally, the obtained responses and structural parameters are used to estimate the wind forces using the equation of motion. It is demonstrated that the proposed methodology can accurately estimate the input wind forces on the structure.</div></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":"132 ","pages":"Article 104203"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974624001385","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Time-history analyses are usually performed to design and examine the performance of tall structures subjected to strong wind loading. An accurate estimate of the time history of wind forces is required to carry out time-history analysis. However, previous studies conducted to estimate the time-history of wind forces require a lot of priori information, such as complete structural parameters and wind-induced responses, which are generally not available in actual conditions. This work addresses the estimation of the time-history of wind forces acting on each story of a ten degree-of-freedom model under the assumption that only the mass and acceleration responses measured on three stories are known. First, cubic spline interpolation is used to determine the unknown acceleration responses and frequency domain integration is used to obtain the velocity and displacement responses. Then, unknown structural parameters (particularly stiffness and damping) are estimated by the Frequency Domain Decomposition method. Finally, the obtained responses and structural parameters are used to estimate the wind forces using the equation of motion. It is demonstrated that the proposed methodology can accurately estimate the input wind forces on the structure.
通过模态分析利用有限楼层加速度响应估算风力时程
时程分析通常用于设计和检查承受强风荷载的高层建筑结构的性能。要进行时间历程分析,就必须准确估算风力的时间历程。然而,以往估算风力时间历程的研究需要大量先验信息,如完整的结构参数和风致响应,而这些信息在实际条件下通常无法获得。本研究在只知道三层楼测得的质量和加速度响应的假设条件下,估算了作用在十自由度模型每一层楼上的风力的时间历程。首先,使用三次样条插值法确定未知加速度响应,并使用频域积分法获得速度和位移响应。然后,利用频域分解法估算未知结构参数(尤其是刚度和阻尼)。最后,利用获得的响应和结构参数,利用运动方程估算风力。结果表明,所提出的方法可以准确估算出结构上的输入风力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Fluids and Structures
Journal of Fluids and Structures 工程技术-工程:机械
CiteScore
6.90
自引率
8.30%
发文量
173
审稿时长
65 days
期刊介绍: The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved. The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信