{"title":"Multi agent system based smart grid anomaly detection using blockchain machine learning model in mobile edge computing network","authors":"Jing Wang","doi":"10.1016/j.compeleceng.2024.109825","DOIUrl":null,"url":null,"abstract":"<div><div>Based on Advanced Metering Infrastructures (AMIs), which enable bidirectional communication between the utility provider and the customer to improve reliability and customer satisfaction, smart grids are deemed completely indispensable in the next generation of electricity networks. Using blockchain machine learning in mobile edge computing for multi-agent systems (MAS), this research proposes a unique approach for smart grid anomaly detection. Here, a blockchain encoder adversarial multi-agent gradient neural network is used to identify anomalies in the smart grid network. Edge Computing reduces traffic and delays communication by shifting processing, data, and services from centralised clouds to Edge Servers (ESs). In terms of prediction accuracy, quality of service, scalability, and anomaly detection rate, experimental investigation is conducted for a variety of smart grid anomaly analysis datasets. The suggested method achieved 89 % scalability, 95 % prediction accuracy, 92 % QoS, and 85 % anomaly detection rate.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"121 ","pages":"Article 109825"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790624007523","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Based on Advanced Metering Infrastructures (AMIs), which enable bidirectional communication between the utility provider and the customer to improve reliability and customer satisfaction, smart grids are deemed completely indispensable in the next generation of electricity networks. Using blockchain machine learning in mobile edge computing for multi-agent systems (MAS), this research proposes a unique approach for smart grid anomaly detection. Here, a blockchain encoder adversarial multi-agent gradient neural network is used to identify anomalies in the smart grid network. Edge Computing reduces traffic and delays communication by shifting processing, data, and services from centralised clouds to Edge Servers (ESs). In terms of prediction accuracy, quality of service, scalability, and anomaly detection rate, experimental investigation is conducted for a variety of smart grid anomaly analysis datasets. The suggested method achieved 89 % scalability, 95 % prediction accuracy, 92 % QoS, and 85 % anomaly detection rate.
期刊介绍:
The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency.
Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.