Multi-isotopic (Fe-Cu-Zn) constraints on the magmato-hydrothermal history during mantle exhumation at slow-spreading centers

IF 4.5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
R. Coltat , B. Debret , R. Tilhac , M. Andreani , C.G.C. Patten , M. Godard , J. Escartín
{"title":"Multi-isotopic (Fe-Cu-Zn) constraints on the magmato-hydrothermal history during mantle exhumation at slow-spreading centers","authors":"R. Coltat ,&nbsp;B. Debret ,&nbsp;R. Tilhac ,&nbsp;M. Andreani ,&nbsp;C.G.C. Patten ,&nbsp;M. Godard ,&nbsp;J. Escartín","doi":"10.1016/j.gca.2024.11.013","DOIUrl":null,"url":null,"abstract":"<div><div>At slow to ultraslow-spreading ridges, tectonic mantle exhumation and magmatic processes accounts for heterogeneity in the lithosphere and drives deep hydrothermal circulation and fluids venting at the seafloor. However, the spatio-temporal evolution and the interplay between magmatic and hydrothermal processes during mantle exhumation, as well as their consequences for chemical exchange at mid-ocean ridges are poorly constrained.</div><div>We carried out a Fe, Cu and Zn isotope study of mantle rocks drilled at the Mid-Atlantic Ridge Kane (MARK) area (23′30°N) to decipher the consequences of magmatic versus hydrothermal chemical exchange on lithospheric mantle composition. At MARK, mantle rocks undergo complex melt-rock interaction during melt percolation overprinted by high temperature (HT, &gt; 350 °C) hydrothermal circulation that leads to the formation of secondary mineral assemblages (e.g., amphibole, chlorite, ilvaite, hydro-andradite, clinopyroxene, talc, serpentine). Serpentinized peridotites cut by hydrothermally overprinted magmatic veins have increased isotopic heterogeneity to both lighter and heavier isotope compositions (δ<sup>56</sup>Fe from −0.44 to 0.07 ± 0.03 ‰; δ<sup>66</sup>Zn from −0.24 to 0.32 ± 0.04 ‰), expending the predictive unaltered composition of the primitive mantle (δ<sup>56</sup>Fe = 0.025 ± 0.025 ‰ and δ<sup>66</sup>Zn = 0.16 ± 0.06 ‰). Such variability is ascribed to diffusion-related kinetic isotope fractionation during the percolation of Fe- and Zn-rich melt in mantle rocks. Low isotopic values are due to preferential diffusion of lighter isotope in mantle rocks, while high values may involve mixing of serpentinized peridotites with isotopically heavy magmatic veins. The lower Cu content (0.5 to 23.9 ppm) and either lower or higher δ<sup>65</sup>Cu (−0.11 to 0.32 ± 0.04 ‰) of abyssal peridotites, compared to the primitive mantle (30 ppm Cu, δ<sup>65</sup>Cu = 0.07 ± 0.1 ‰), can be explained through Cu leaching during hydrothermal alteration of sulfide, and possibly oxide, at high temperature (∼ 450–600 °C). Hydrothermal veins in serpentinites formed at decreasing temperature (∼ 300 °C) from a metal- and sulfur-rich fluid interacting with serpentinized peridotites. Iron, Cu and Zn isotopes record the inventory of magmato-hydrothermal processes during mantle exhumation at (ultra-)slow spreading centers, from HT melt-rock interaction to late low-temperature (LT) fluid-rock interaction.</div></div>","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"388 ","pages":"Pages 48-60"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016703724005933","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

At slow to ultraslow-spreading ridges, tectonic mantle exhumation and magmatic processes accounts for heterogeneity in the lithosphere and drives deep hydrothermal circulation and fluids venting at the seafloor. However, the spatio-temporal evolution and the interplay between magmatic and hydrothermal processes during mantle exhumation, as well as their consequences for chemical exchange at mid-ocean ridges are poorly constrained.
We carried out a Fe, Cu and Zn isotope study of mantle rocks drilled at the Mid-Atlantic Ridge Kane (MARK) area (23′30°N) to decipher the consequences of magmatic versus hydrothermal chemical exchange on lithospheric mantle composition. At MARK, mantle rocks undergo complex melt-rock interaction during melt percolation overprinted by high temperature (HT, > 350 °C) hydrothermal circulation that leads to the formation of secondary mineral assemblages (e.g., amphibole, chlorite, ilvaite, hydro-andradite, clinopyroxene, talc, serpentine). Serpentinized peridotites cut by hydrothermally overprinted magmatic veins have increased isotopic heterogeneity to both lighter and heavier isotope compositions (δ56Fe from −0.44 to 0.07 ± 0.03 ‰; δ66Zn from −0.24 to 0.32 ± 0.04 ‰), expending the predictive unaltered composition of the primitive mantle (δ56Fe = 0.025 ± 0.025 ‰ and δ66Zn = 0.16 ± 0.06 ‰). Such variability is ascribed to diffusion-related kinetic isotope fractionation during the percolation of Fe- and Zn-rich melt in mantle rocks. Low isotopic values are due to preferential diffusion of lighter isotope in mantle rocks, while high values may involve mixing of serpentinized peridotites with isotopically heavy magmatic veins. The lower Cu content (0.5 to 23.9 ppm) and either lower or higher δ65Cu (−0.11 to 0.32 ± 0.04 ‰) of abyssal peridotites, compared to the primitive mantle (30 ppm Cu, δ65Cu = 0.07 ± 0.1 ‰), can be explained through Cu leaching during hydrothermal alteration of sulfide, and possibly oxide, at high temperature (∼ 450–600 °C). Hydrothermal veins in serpentinites formed at decreasing temperature (∼ 300 °C) from a metal- and sulfur-rich fluid interacting with serpentinized peridotites. Iron, Cu and Zn isotopes record the inventory of magmato-hydrothermal processes during mantle exhumation at (ultra-)slow spreading centers, from HT melt-rock interaction to late low-temperature (LT) fluid-rock interaction.
慢扩张中心地幔掘出过程中岩浆热液历史的多同位素(铁-铜-锌)制约因素
在慢速至超慢速扩张的海脊,构造地幔掘起和岩浆过程造成岩石圈的异质性,并驱动深层热液循环和海底流体排泄。我们对大西洋中脊凯恩(MARK)地区(23′30°N)的地幔岩石进行了铁、铜和锌同位素研究,以解读岩浆与热液化学交换对岩石圈地幔成分的影响。在MARK地区,地幔岩石在高温(HT, > 350 °C)热液循环叠加的熔融渗流过程中经历了复杂的熔岩-岩石相互作用,形成了次生矿物组合(如闪石、绿泥石、伊利石、水安山岩、挛辉石、滑石、蛇纹石)。被热液叠印岩浆岩脉切割的蛇纹岩化橄榄岩在较轻和较重同位素组成方面的同位素异质性都有所增加(δ56Fe 从 -0.44 到 0.07 ± 0.03 ‰;δ66Zn 从 -0.24 到 0.32 ± 0.04 ‰),超过了预测的原始地幔未改变成分(δ56Fe = 0.025 ± 0.025 ‰,δ66Zn = 0.16 ± 0.06 ‰)。这种变化归因于地幔岩石中富含铁和锌的熔体在渗流过程中与扩散有关的动力学同位素分馏。较低的同位素值是由于较轻的同位素在地幔岩石中优先扩散所致,而较高的同位素值则可能涉及蛇绿岩化橄榄岩与同位素较重的岩浆矿脉的混合。与原始地幔(铜含量为百万分之 30,δ65Cu = 0.07 ± 0.1 ‰)相比,深海橄榄岩的铜含量较低(百万分之 0.5 至 23.9),δ65Cu 值较低或较高(-0.11 至 0.32 ± 0.04 ‰),这可以通过硫化物(可能还有氧化物)在高温(450 ∼ 600 °C)下发生热液蚀变过程中的铜浸出来解释。蛇纹岩中的热液矿脉是在温度降低(300 °C以下)时由富含金属和硫的流体与蛇纹岩化橄榄岩相互作用形成的。铁、铜和锌同位素记录了(超)慢扩张中心地幔掘起过程中,从高温熔岩-岩石相互作用到低温流体-岩石相互作用晚期的岩浆-热液过程清单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geochimica et Cosmochimica Acta
Geochimica et Cosmochimica Acta 地学-地球化学与地球物理
CiteScore
9.60
自引率
14.00%
发文量
437
审稿时长
6 months
期刊介绍: Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes: 1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids 2). Igneous and metamorphic petrology 3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth 4). Organic geochemistry 5). Isotope geochemistry 6). Meteoritics and meteorite impacts 7). Lunar science; and 8). Planetary geochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信