Investigation on void fraction of gas–liquid two-phase flow in horizontal pipe under fluctuating vibration

IF 1.9 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Yunlong Zhou, Yiwen Ran, Qichao Liu, Shibo Zhang
{"title":"Investigation on void fraction of gas–liquid two-phase flow in horizontal pipe under fluctuating vibration","authors":"Yunlong Zhou,&nbsp;Yiwen Ran,&nbsp;Qichao Liu,&nbsp;Shibo Zhang","doi":"10.1016/j.nucengdes.2024.113710","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate prediction of void fraction of gas–liquid two-phase flow under fluctuating vibration is crucial for the safe and stable operation of floating nuclear power plants. The void fraction characteristics of gas–liquid two-phase flow in horizontal pipe under different vibration conditions are studied experimentally. The results showed that the void fraction of bubbly flow and intermittent flow varies considerably under fluctuating vibration, whereas changes in stratified flow and annular flow are less pronounced. Generally speaking, the void fraction first increases and then decreases with the increase of pipe diameter, while the increase of vibration frequency and amplitude cause a nonlinear variation in the void fraction. Evaluation of void fraction calculation models for stationary pipes reveals that existing models have significant prediction errors for bubbly flow and intermittent flow void fractions. By considering the effects of pipe diameter and vibration parameters, the Froude number of liquid phase is introduced to develop a void fraction calculation model for bubbly flow and intermittent flow. The Mean Absolute Relative Difference (MARD) of new established model is 10.66% and 12.06%. This significantly improved the prediction accuracy of the void fraction under fluctuating vibration.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"431 ","pages":"Article 113710"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324008100","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of void fraction of gas–liquid two-phase flow under fluctuating vibration is crucial for the safe and stable operation of floating nuclear power plants. The void fraction characteristics of gas–liquid two-phase flow in horizontal pipe under different vibration conditions are studied experimentally. The results showed that the void fraction of bubbly flow and intermittent flow varies considerably under fluctuating vibration, whereas changes in stratified flow and annular flow are less pronounced. Generally speaking, the void fraction first increases and then decreases with the increase of pipe diameter, while the increase of vibration frequency and amplitude cause a nonlinear variation in the void fraction. Evaluation of void fraction calculation models for stationary pipes reveals that existing models have significant prediction errors for bubbly flow and intermittent flow void fractions. By considering the effects of pipe diameter and vibration parameters, the Froude number of liquid phase is introduced to develop a void fraction calculation model for bubbly flow and intermittent flow. The Mean Absolute Relative Difference (MARD) of new established model is 10.66% and 12.06%. This significantly improved the prediction accuracy of the void fraction under fluctuating vibration.
波动振动下水平管道中气液两相流的空隙率研究
准确预测波动振动条件下气液两相流的空隙率对于浮动核电站的安全稳定运行至关重要。实验研究了不同振动条件下水平管道中气液两相流的空隙率特征。结果表明,在波动振动条件下,气泡流和间歇流的空隙率变化很大,而分层流和环形流的变化则不太明显。一般来说,随着管道直径的增大,空隙率会先增大后减小,而振动频率和振幅的增大会导致空隙率的非线性变化。对静止管道的空隙率计算模型进行评估后发现,现有模型对气泡流和间歇流空隙率的预测误差很大。通过考虑管道直径和振动参数的影响,引入液相的 Froude 数,建立了气泡流和间歇流的空隙率计算模型。新建立模型的平均绝对相对差值(MARD)分别为 10.66% 和 12.06%。这大大提高了波动振动下空隙率的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Engineering and Design
Nuclear Engineering and Design 工程技术-核科学技术
CiteScore
3.40
自引率
11.80%
发文量
377
审稿时长
5 months
期刊介绍: Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology. Fundamentals of Reactor Design include: • Thermal-Hydraulics and Core Physics • Safety Analysis, Risk Assessment (PSA) • Structural and Mechanical Engineering • Materials Science • Fuel Behavior and Design • Structural Plant Design • Engineering of Reactor Components • Experiments Aspects beyond fundamentals of Reactor Design covered: • Accident Mitigation Measures • Reactor Control Systems • Licensing Issues • Safeguard Engineering • Economy of Plants • Reprocessing / Waste Disposal • Applications of Nuclear Energy • Maintenance • Decommissioning Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信