{"title":"Development of plutonium fuel facility decommissioning technology to accelerate glovebox dismantling and reduce air-fed suits based operations","authors":"Masato Yoshida, Satoshi Iguchi, Hiroshi Hirano, Akihiro Kitamura","doi":"10.1016/j.nucengdes.2024.113691","DOIUrl":null,"url":null,"abstract":"<div><div>The Plutonium Fuel Fabrication Facility is currently in the decommissioning phase, with glovebox dismantling operations ongoing since 2010. During conventional glovebox dismantling operations, the glovebox to be dismantled is enclosed within plastic tents to contain contamination. The glovebox is then dismantled by workers wearing air-fed suits with thermal or mechanical cutting tools, which typically generate dross or sparks in the form of radioactive aerosols during cutting. Despite the longevity and meticulous organization of this manual method, the workload remains considerable, while the allowable working time is limited. In addition, the potential for inhalation exposure to plutonium is elevated in the event of an accident given the contamination of the work area. To overcome disadvantages associated with conventional glovebox dismantling methods, new methods are currently being developed. The primary objective is to reduce the reliance on operation based on air-fed suits and enhance worker safety by introducing remote equipment and a new floor-reinforcing panel. Another objective is to suppress waste generation by reusing all equipment on multiple occasions which is achieved by developing a containment system that have a large open port with a pallet for the storage and reuse of equipment for successive operations. Furthermore, a glove operation compartment is designed and tested for the manual handling of dismantled materials as an additional strategy to reduce work based on air-fed suits and mitigate secondary waste generation.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"431 ","pages":"Article 113691"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002954932400791X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Plutonium Fuel Fabrication Facility is currently in the decommissioning phase, with glovebox dismantling operations ongoing since 2010. During conventional glovebox dismantling operations, the glovebox to be dismantled is enclosed within plastic tents to contain contamination. The glovebox is then dismantled by workers wearing air-fed suits with thermal or mechanical cutting tools, which typically generate dross or sparks in the form of radioactive aerosols during cutting. Despite the longevity and meticulous organization of this manual method, the workload remains considerable, while the allowable working time is limited. In addition, the potential for inhalation exposure to plutonium is elevated in the event of an accident given the contamination of the work area. To overcome disadvantages associated with conventional glovebox dismantling methods, new methods are currently being developed. The primary objective is to reduce the reliance on operation based on air-fed suits and enhance worker safety by introducing remote equipment and a new floor-reinforcing panel. Another objective is to suppress waste generation by reusing all equipment on multiple occasions which is achieved by developing a containment system that have a large open port with a pallet for the storage and reuse of equipment for successive operations. Furthermore, a glove operation compartment is designed and tested for the manual handling of dismantled materials as an additional strategy to reduce work based on air-fed suits and mitigate secondary waste generation.
期刊介绍:
Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology.
Fundamentals of Reactor Design include:
• Thermal-Hydraulics and Core Physics
• Safety Analysis, Risk Assessment (PSA)
• Structural and Mechanical Engineering
• Materials Science
• Fuel Behavior and Design
• Structural Plant Design
• Engineering of Reactor Components
• Experiments
Aspects beyond fundamentals of Reactor Design covered:
• Accident Mitigation Measures
• Reactor Control Systems
• Licensing Issues
• Safeguard Engineering
• Economy of Plants
• Reprocessing / Waste Disposal
• Applications of Nuclear Energy
• Maintenance
• Decommissioning
Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.