Validation process against late phase conditions of the passive autocatalytic recombiner simulation code PARUPM as a standalone tool using experimental data from REKO-3 and THAI facilities
{"title":"Validation process against late phase conditions of the passive autocatalytic recombiner simulation code PARUPM as a standalone tool using experimental data from REKO-3 and THAI facilities","authors":"Araceli Dominguez-Bugarin , Ernst-Arndt Reinecke , Gonzalo Jiménez , Miguel Ángel Jiménez , Sanjeev Gupta","doi":"10.1016/j.nucengdes.2024.113722","DOIUrl":null,"url":null,"abstract":"<div><div>In case of a nuclear accident with core damage in a light water reactor, the oxidation of the fuel cladding and other materials could lead to the release of combustible gases (H<sub>2</sub> and CO) to the containment building. To mitigate the potential risk of combustion of these gases, passive autocatalytic recombiners (PARs) have been installed in numerous nuclear reactors in Europe and worldwide. PARs recombine H<sub>2</sub> and CO with O<sub>2</sub> producing H<sub>2</sub>O and CO<sub>2</sub>, respectively, without an open flame.</div><div>PARUPM is a code that simulates the behaviour of PARs using a physicochemical model approach. In the framework of the AMHYCO project (EU-funded Horizon 2020 project), which seeks to advance the understanding and simulation capabilities to support the combustion risk management in severe accidents, the code has been extensively enhanced and developed to simulate PAR operation with H<sub>2</sub>/CO/O<sub>2</sub>/steam mixtures. Alongside these new capabilities, the code needed a new validation process.</div><div>In this paper, the process of validation of PARUPM as a standalone code is described. The validation for steady state conditions was achieved through comparison with REKO-3 experimental data while the transient conditions were compared with results obtained with the THAI test facility. A thorough analysis of the code capabilities was performed by comparing the numerical results with experimental data for a broad series of conditions, namely: a range of different input gas temperatures and concentrations, oxygen starvation, CO poisoning, etc.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"431 ","pages":"Article 113722"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324008227","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In case of a nuclear accident with core damage in a light water reactor, the oxidation of the fuel cladding and other materials could lead to the release of combustible gases (H2 and CO) to the containment building. To mitigate the potential risk of combustion of these gases, passive autocatalytic recombiners (PARs) have been installed in numerous nuclear reactors in Europe and worldwide. PARs recombine H2 and CO with O2 producing H2O and CO2, respectively, without an open flame.
PARUPM is a code that simulates the behaviour of PARs using a physicochemical model approach. In the framework of the AMHYCO project (EU-funded Horizon 2020 project), which seeks to advance the understanding and simulation capabilities to support the combustion risk management in severe accidents, the code has been extensively enhanced and developed to simulate PAR operation with H2/CO/O2/steam mixtures. Alongside these new capabilities, the code needed a new validation process.
In this paper, the process of validation of PARUPM as a standalone code is described. The validation for steady state conditions was achieved through comparison with REKO-3 experimental data while the transient conditions were compared with results obtained with the THAI test facility. A thorough analysis of the code capabilities was performed by comparing the numerical results with experimental data for a broad series of conditions, namely: a range of different input gas temperatures and concentrations, oxygen starvation, CO poisoning, etc.
期刊介绍:
Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology.
Fundamentals of Reactor Design include:
• Thermal-Hydraulics and Core Physics
• Safety Analysis, Risk Assessment (PSA)
• Structural and Mechanical Engineering
• Materials Science
• Fuel Behavior and Design
• Structural Plant Design
• Engineering of Reactor Components
• Experiments
Aspects beyond fundamentals of Reactor Design covered:
• Accident Mitigation Measures
• Reactor Control Systems
• Licensing Issues
• Safeguard Engineering
• Economy of Plants
• Reprocessing / Waste Disposal
• Applications of Nuclear Energy
• Maintenance
• Decommissioning
Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.