{"title":"Effects of nanosilica and aggregate type on the mechanical, fracture and shielding features of heavyweight concrete","authors":"Mohsen Ghorbani , Morteza Biklaryan , Morteza Hosseinali Beygi , Omid Lotfi-Omran","doi":"10.1016/j.nucengdes.2024.113713","DOIUrl":null,"url":null,"abstract":"<div><div>With recent developments in nuclear technology, the safety versus nuclear radiations with negative environmental influences is of great importance. Heavyweight concrete (HWC) is an effective absorbent material, capable of providing adequate shielding versus nuclear radiations because of its acceptable structural characteristics. However, the role of aggregate type in the shielding and fracture characteristics of HWC has not been explored comprehensively. On the other hand, nanosilica is one of the reactive pozzolans which is employed for improvement of concrete properties. Thus, in this investigation, the influences of aggregate type (magnetite and hematite) and nanosilica on the mechanical, fracture and shielding features of HWC were studied. Four different cement replacements by nanosilica (0, 2, 4 and 6 %) were used to evaluate its influence on the properties of HWC. The results depicted that the fracture energies increase 18.8 and 16.8 % for heavyweight magnetite and hematite concretes with increasing nanosilica up to 6 wt% (wt.%) of cement, respectively. Furthermore, characteristic length declines from 385.6 to 364.8 mm and from 562.6 to 522.9 mm for heavyweight magnetite and hematite concretes with increasing nanosilica up to 6 wt% of cement, respectively. The results also showed that application of magnetite aggregates in HWC can more effectively shield against nuclear radiations than hematite ones which this issue becomes more obvious with increasing nanosilica content to 4 wt% of cement.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"431 ","pages":"Article 113713"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324008136","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
With recent developments in nuclear technology, the safety versus nuclear radiations with negative environmental influences is of great importance. Heavyweight concrete (HWC) is an effective absorbent material, capable of providing adequate shielding versus nuclear radiations because of its acceptable structural characteristics. However, the role of aggregate type in the shielding and fracture characteristics of HWC has not been explored comprehensively. On the other hand, nanosilica is one of the reactive pozzolans which is employed for improvement of concrete properties. Thus, in this investigation, the influences of aggregate type (magnetite and hematite) and nanosilica on the mechanical, fracture and shielding features of HWC were studied. Four different cement replacements by nanosilica (0, 2, 4 and 6 %) were used to evaluate its influence on the properties of HWC. The results depicted that the fracture energies increase 18.8 and 16.8 % for heavyweight magnetite and hematite concretes with increasing nanosilica up to 6 wt% (wt.%) of cement, respectively. Furthermore, characteristic length declines from 385.6 to 364.8 mm and from 562.6 to 522.9 mm for heavyweight magnetite and hematite concretes with increasing nanosilica up to 6 wt% of cement, respectively. The results also showed that application of magnetite aggregates in HWC can more effectively shield against nuclear radiations than hematite ones which this issue becomes more obvious with increasing nanosilica content to 4 wt% of cement.
期刊介绍:
Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology.
Fundamentals of Reactor Design include:
• Thermal-Hydraulics and Core Physics
• Safety Analysis, Risk Assessment (PSA)
• Structural and Mechanical Engineering
• Materials Science
• Fuel Behavior and Design
• Structural Plant Design
• Engineering of Reactor Components
• Experiments
Aspects beyond fundamentals of Reactor Design covered:
• Accident Mitigation Measures
• Reactor Control Systems
• Licensing Issues
• Safeguard Engineering
• Economy of Plants
• Reprocessing / Waste Disposal
• Applications of Nuclear Energy
• Maintenance
• Decommissioning
Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.