A novel gait quality measure for characterizing pathological gait based on Hidden Markov Models

IF 7 2区 医学 Q1 BIOLOGY
Abdelghani Halimi , Lorenzo Hermez , Nesma Houmani , Sonia Garcia-Salicetti , Omar Galarraga
{"title":"A novel gait quality measure for characterizing pathological gait based on Hidden Markov Models","authors":"Abdelghani Halimi ,&nbsp;Lorenzo Hermez ,&nbsp;Nesma Houmani ,&nbsp;Sonia Garcia-Salicetti ,&nbsp;Omar Galarraga","doi":"10.1016/j.compbiomed.2024.109368","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses the characterization of normal gait and pathological deviations caused by neurological diseases. We focus on the angular knee kinematics in the sagittal plane and we propose to exploit Hidden Markov Models to build a statistical model of normal gait. Such model provides a log-likelihood score that quantifies gait quality. Hence allowing to assess deviations of pathological cycles from normal gait. Our approach allows a refined characterization of motor impairments of three different patients’ groups. In particular, it detects the affected lower limb in Hemiparetic patients. Comparatively to the Gait Variable Score and a Dynamic Time Warping-based metric, our results show that our statistical method is more effective for finely quantifying pathological deviations. Finally, we show the potential use of our methodology to assess therapeutic impacts during gait rehabilitation, which represents a promising avenue for improving patient care.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"184 ","pages":"Article 109368"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482524014537","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the characterization of normal gait and pathological deviations caused by neurological diseases. We focus on the angular knee kinematics in the sagittal plane and we propose to exploit Hidden Markov Models to build a statistical model of normal gait. Such model provides a log-likelihood score that quantifies gait quality. Hence allowing to assess deviations of pathological cycles from normal gait. Our approach allows a refined characterization of motor impairments of three different patients’ groups. In particular, it detects the affected lower limb in Hemiparetic patients. Comparatively to the Gait Variable Score and a Dynamic Time Warping-based metric, our results show that our statistical method is more effective for finely quantifying pathological deviations. Finally, we show the potential use of our methodology to assess therapeutic impacts during gait rehabilitation, which represents a promising avenue for improving patient care.
基于隐马尔可夫模型的病态步态特征的新型步态质量测量方法
本研究探讨了正常步态和神经系统疾病引起的病理偏差的特征。我们将重点放在矢状面上的膝关节角运动学上,并建议利用隐马尔可夫模型来建立正常步态的统计模型。该模型提供了一个对数似然得分,可量化步态质量。因此,可以评估病理周期与正常步态的偏差。我们的方法可以对三组不同患者的运动障碍特征进行细化。特别是,它能检测出偏瘫患者受影响的下肢。与步态变量评分和基于动态时间扭曲的指标相比,我们的结果表明,我们的统计方法在精细量化病理偏差方面更为有效。最后,我们还展示了我们的方法在步态康复过程中评估治疗效果的潜在用途,这是改善患者护理的一个很有前景的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信