Fatima Akram , Amna Murrawat Ali , Muhammad Tayyab Akhtar , Taseer Fatima , Ifrah Shabbir , Ikram ul Haq
{"title":"The journey of antibody-drug conjugates for revolutionizing cancer therapy: A review","authors":"Fatima Akram , Amna Murrawat Ali , Muhammad Tayyab Akhtar , Taseer Fatima , Ifrah Shabbir , Ikram ul Haq","doi":"10.1016/j.bmc.2024.118010","DOIUrl":null,"url":null,"abstract":"<div><div>Antibody-drug conjugates (ADCs) represent a powerful class of targeted cancer therapies that harness the specificity of monoclonal antibodies to deliver cytotoxic payloads directly to tumor cells, minimizing off-target effects. This review explores the advancements in ADC technologies, focusing on advancing next-generation ADCs with novel payloads, conjugation strategies, and enhanced pharmacokinetic profiles. In particular, we highlight innovative payloads, including microtubule inhibitors, spliceosome modulators, and RNA polymerase inhibitors, that offer new mechanisms of cytotoxicity beyond traditional apoptosis induction. Additionally, the introduction of sophisticated conjugation techniques, such as site-specific conjugation using engineered cysteines, enzymatic methods, and integration of non-natural amino acids, has greatly improved the homogeneity, efficacy, and safety of ADCs. Furthermore, the review delves into the mechanistic insights into ADC action, detailing the intracellular pathways that facilitate drug release and cell death, and discussing the significance of bioconjugation methods in optimizing drug-antibody ratios (DARs). The establishment of comprehensive databases like ADCdb, which catalog vital pharmacological and biological data for ADCs, is also explored as a critical resource for advancing ADC research and clinical application. Finally, the clinical landscape of ADCs is examined, with a focus on the evolution of FDA-approved ADCs, such as Gemtuzumab Ozogamicin and Trastuzumab Emtansine, as well as emerging candidates in ongoing trials. As ADCs continue to evolve, their potential to revolutionize cancer therapy remains immense, offering new hope for more effective and personalized treatment options. ADCs also offer a significant advancement in targeted cancer therapy by merging the specificity of monoclonal antibodies with cytotoxic potency of chemotherapeutic agents. Hence, this dual mechanism intensifies tumor selectivity while minimizing systemic toxicity, paving the way for more effective and safer cancer treatments.</div></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":"117 ","pages":"Article 118010"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968089624004243","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antibody-drug conjugates (ADCs) represent a powerful class of targeted cancer therapies that harness the specificity of monoclonal antibodies to deliver cytotoxic payloads directly to tumor cells, minimizing off-target effects. This review explores the advancements in ADC technologies, focusing on advancing next-generation ADCs with novel payloads, conjugation strategies, and enhanced pharmacokinetic profiles. In particular, we highlight innovative payloads, including microtubule inhibitors, spliceosome modulators, and RNA polymerase inhibitors, that offer new mechanisms of cytotoxicity beyond traditional apoptosis induction. Additionally, the introduction of sophisticated conjugation techniques, such as site-specific conjugation using engineered cysteines, enzymatic methods, and integration of non-natural amino acids, has greatly improved the homogeneity, efficacy, and safety of ADCs. Furthermore, the review delves into the mechanistic insights into ADC action, detailing the intracellular pathways that facilitate drug release and cell death, and discussing the significance of bioconjugation methods in optimizing drug-antibody ratios (DARs). The establishment of comprehensive databases like ADCdb, which catalog vital pharmacological and biological data for ADCs, is also explored as a critical resource for advancing ADC research and clinical application. Finally, the clinical landscape of ADCs is examined, with a focus on the evolution of FDA-approved ADCs, such as Gemtuzumab Ozogamicin and Trastuzumab Emtansine, as well as emerging candidates in ongoing trials. As ADCs continue to evolve, their potential to revolutionize cancer therapy remains immense, offering new hope for more effective and personalized treatment options. ADCs also offer a significant advancement in targeted cancer therapy by merging the specificity of monoclonal antibodies with cytotoxic potency of chemotherapeutic agents. Hence, this dual mechanism intensifies tumor selectivity while minimizing systemic toxicity, paving the way for more effective and safer cancer treatments.
期刊介绍:
Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides.
The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.