Utilizing deep learning for swift analysis of high-throughput spectroscopic ellipsometry data on anodized oxides of valve metals

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiaocha He , Juan Zuo , Wenhui Zhang , Andrei Ionut Mardare , Chaohui Guan , Tenglei Han , Dewei Zhao
{"title":"Utilizing deep learning for swift analysis of high-throughput spectroscopic ellipsometry data on anodized oxides of valve metals","authors":"Xiaocha He ,&nbsp;Juan Zuo ,&nbsp;Wenhui Zhang ,&nbsp;Andrei Ionut Mardare ,&nbsp;Chaohui Guan ,&nbsp;Tenglei Han ,&nbsp;Dewei Zhao","doi":"10.1016/j.commatsci.2024.113549","DOIUrl":null,"url":null,"abstract":"<div><div>Spectroscopic ellipsometry is a powerful high-throughput method for mapping the optical properties of combinatorial anodic oxides on alloys. However, the traditional ellipsometry data fitting using non-linear regression highly depends on correct assumptions and is tedious. The determination of the transition concentration of parent alloys that influences its properties to change, based on existing experimental data, without requiring further experimental measurements is also crucial for alloy engineering. Herein, anodic oxides grown on Nb-Ta and Nb-Ti combinatorial thin film binary libraries using a co-sputtering process are prepared (Nb concentration range is 10 ∼ 90<!--> <!-->at.%, the oxidation voltage range is 1 ∼ 10 V). A deep learning method is developed to predict the refractive index (<em>n</em>) and extinction coefficient (<em>k</em>) of the oxide film from the ellipsometry data (606 groups). Four algorithms Convolutional Neural Networks (CNN), Convolutional Sequence-to-Sequence (ConvSeq2Seq), Temporal Convolutional Network (TCN), Gated Recurrent Unit Sequence-to-Sequence (GRUSeq2Seq) are compared. CNN achieves superior performance, yielding root mean square error values (RMSE) as low as 0.094 for predicting <em>n</em> and 0.037 for <em>k</em>. Additionally, a predictive model to reveal band-gap trends as a function of parent alloy composition and oxidation voltage at unmeasured locations along the libraries is developed. This approach helps identify the transition concentration that lead to optical property changes, thereby avoiding high experimental costs and potential experimental errors.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"247 ","pages":"Article 113549"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624007705","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spectroscopic ellipsometry is a powerful high-throughput method for mapping the optical properties of combinatorial anodic oxides on alloys. However, the traditional ellipsometry data fitting using non-linear regression highly depends on correct assumptions and is tedious. The determination of the transition concentration of parent alloys that influences its properties to change, based on existing experimental data, without requiring further experimental measurements is also crucial for alloy engineering. Herein, anodic oxides grown on Nb-Ta and Nb-Ti combinatorial thin film binary libraries using a co-sputtering process are prepared (Nb concentration range is 10 ∼ 90 at.%, the oxidation voltage range is 1 ∼ 10 V). A deep learning method is developed to predict the refractive index (n) and extinction coefficient (k) of the oxide film from the ellipsometry data (606 groups). Four algorithms Convolutional Neural Networks (CNN), Convolutional Sequence-to-Sequence (ConvSeq2Seq), Temporal Convolutional Network (TCN), Gated Recurrent Unit Sequence-to-Sequence (GRUSeq2Seq) are compared. CNN achieves superior performance, yielding root mean square error values (RMSE) as low as 0.094 for predicting n and 0.037 for k. Additionally, a predictive model to reveal band-gap trends as a function of parent alloy composition and oxidation voltage at unmeasured locations along the libraries is developed. This approach helps identify the transition concentration that lead to optical property changes, thereby avoiding high experimental costs and potential experimental errors.

Abstract Image

利用深度学习快速分析阀金属阳极氧化物的高通量光谱椭偏仪数据
光谱椭偏仪是一种强大的高通量方法,可用于绘制合金上组合阳极氧化物的光学特性图。然而,使用非线性回归进行数据拟合的传统椭偏仪高度依赖于正确的假设,而且操作繁琐。在现有实验数据的基础上,确定影响母合金性质变化的过渡浓度,而不需要进一步的实验测量,这对合金工程也至关重要。本文采用共溅射工艺制备了生长在 Nb-Ta 和 Nb-Ti 组合薄膜二元库上的阳极氧化物(Nb 浓度范围为 10 ∼ 90 at.%,氧化电压范围为 1 ∼ 10 V)。我们开发了一种深度学习方法,从椭偏仪数据(606 组)中预测氧化膜的折射率(n)和消光系数(k)。比较了四种算法:卷积神经网络(CNN)、卷积序列到序列(ConvSeq2Seq)、时序卷积网络(TCN)、门控递归单元序列到序列(GRUSeq2Seq)。CNN 性能优越,预测 n 的均方根误差值 (RMSE) 低至 0.094,预测 k 的均方根误差值 (RMSE) 低至 0.037。此外,还开发了一个预测模型,以揭示带隙趋势与母合金成分和库沿线未测量位置的氧化电压的函数关系。这种方法有助于确定导致光学特性变化的转变浓度,从而避免高昂的实验成本和潜在的实验误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信